VC series User Manual

Ħ

한국어

CAMERA

VC-101MC-M/C8H VC-151MC-<u>M/C5H</u>

책 머리에

이 매뉴얼은 ㈜뷰웍스의 서면 승인 없이는 전체 또는 일부를 복사, 복제, 번역 또는 그 어떠한 전자, 기계 읽기 가능한 형태로 출판될 수 없습니다.

이 매뉴얼은 ㈜뷰웍스의 통제하에 있지 않는 기타 업체로의 웹사이트 링크를 포함하고 있을 수도 있으며, ㈜뷰웍스는 링크된 그 어떠한 사이트에 대해서도 책임을 지지 않습니다. 또한, 출처를 미처 밝히지 못한 인용 자료들의 저작권은 원작자에게 있음을 밝힙니다.

틀린 부분이 없도록 하기 위해 최선의 노력을 다했지만, 혹시라도 있을 수 있는 오류나 누락에 대하여 ㈜뷰웍스는 일체의 책임을 지지 않습니다. 제품의 버전이나 실행되는 형태에 따라 사진이 다를 수도 있습니다. 사양이나 사진은 매뉴얼 제작 시점의 최신 자료에 기초하고 있으나, 예고 없이 변경될 수도 있습니다.

제품을 사용하기 전에

VC-101MC/151MC™를 구입해 주셔서 고맙습니다.

- 반드시, 매뉴얼을 읽어보신 후 제품을 사용하십시오.
- 반드시, 전문 엔지니어가 제품을 설치하고 최적화 작업까지 완료했는지 확인하십시오.
- 매뉴얼을 제품 사용 중 쉽게 볼 수 있는 장소에 보관하십시오.
- 이 매뉴얼은 사용자가 카메라에 대한 전문지식을 갖추었다는 전제하에서 작성되었습니다.

해당 제품

이 매뉴얼은 다음 제품의 사용자를 위하여 작성했습니다.

• VC-101MC/151MC

이 매뉴얼에 대하여

이 매뉴얼은 VC-101MC/151MC[™]의 카메라 사용자를 위해 작성되었습니다. 이 매뉴얼과 함께, 사용하시는 프레임그래버의 매뉴얼도 함께 참조하시기를 권장합니다.

이 매뉴얼의 규칙

이 매뉴얼에서는 사용자의 이해를 돕기 위해 표현 방식의 일관성을 최대한 유지했습니다.

표기 방식

이 매뉴얼에서는 다음의 표기 방식을 사용했습니다.

- 제품에서 인용한 메뉴명, 아이콘명 등은 이 매뉴얼의 맞춤법에 관계 없이 제품에 쓰인 대로 표기 했습니다.
- 제품에서 인용한 메뉴명, 아이콘명 등은 이런 글꼴로 표기했습니다.
- 네모난 형태의 버튼명이나 키보드의 키(Key) 이름은 이런 글꼴 로 표기했습니다.

경고나 주의, 참고의 의미

Caution!

Note:

이 매뉴얼에서는 경고와 주의, 참고, 세 가지 방식의 메시지를 사용했습니다.

Warning! 이 메시지는 사용자가 본인의 안전이나 제품 손상 방지를 위하여 따라야 하는 정보입니다.

이 메시지는 사용자가 데이터의 손실 또는 손상을 방지하기 위하여 따라야 하는 정보입니다.

이 메시지는 본문 내용에 대한 부가적인 정보를 제공합니다.

용어 정의

이 매뉴얼에서는 사용자의 편의를 위해 일부 단어들을 특정한 의미로 지정하여 사용합니다. 이에 대해서는 다음 표를 참고하십시오.

용어	의미
서문	이 매뉴얼의 목차 앞에 있는 부분을 통칭
Vieworks Imaging Solution	카메라를 컨트롤하기 위해 뷰웍스에서 함께 제공하는 소프트웨어를 지칭
VIS	Vieworks Imaging Solution

매뉴얼 개정 이력

이 매뉴얼의 개정 이력은 다음과 같습니다.

버전	날짜	설명
1.0	2019-05-24	최초 릴리스
1.1	2020-02-18	•새 CI 적용 •Camera Link 커넥터 유형 명시
1.2	2021-03-15	• Binning 기능 추가 • Flat Filed Target Level 수동 설정 추가 추가한 기능은 Serial Command를 통해서만 사용할 수 있습니다.
1.3	2022-11-25	서식 개정

목차

1장.	주의사항	
2상. 2자	모증멈위	
38. 4장	지응지 건대군	10
·장· 5장.	제품 규격	
5.1	개요	
5.2	Specification	
5.3	Camera Block Diagram	
5.4	스펙트럼 응답 특성	23
	5.4.1 흑백 카메라 스펙트럼 응답 특성	23
	5.4.2 컬러 카메라 스펙트럼 응답 특성	25
5.5	Mechanical Specification	27
6장.	카메라 연결 방법	29
6.1	센서 중심 조정에 대한 주의사항	
6.2	중심대비 주변상 흐림에 대한 주의사항	
6.3	카메라 제어	
7장.	Camera Interface	
7.1	General Description	
7.2	Camera Link SDR 커넥터	
7.3	전원 입력 단자	35
7.4	컨트롤 입/출력 단자	
7.5	Trigger Input Circuit	
7.6	Strobe Output Circuit	
8장.	Acquisition Control	
8.1	개요	
8.2	Acquisition Start/Stop 명령 및 Acquisition Mode	41
8.3	Exposure Start 트리거	42
	8.3.1 Trigger Mode	

	8.3.2 Software 트리거 신호 사용하기45
	8.3.3 CC1 트리거 신호 사용하기46
	8.3.4 External 트리거 신호 사용하기47
	8.3.5 Exposure Mode
8.4	노출 시간 설정51
8.5	Rolling Shutter
8.6	Exposure와 Readout Overlap
	8.6.1 Trigger Mode = Off일 때 Overlapped Acquisition
	8.6.2 Trigger Mode = On일 때 Overlapped Acquisition
8.7	허용 가능한 최대 Frame Rate57
	8.7.1 허용 가능한 최대 Frame Rate 증가하기57
9장. C a	amera Features
9.1	Image Region of Interest
9.2	Binning (Monochrome Only)61
9.3	Pixel Format63
9.4	Camera Link Tap Geometry64
9.5	Camera Link Pixel Clock Speed65
9.6	AWBROI(컬러 카메라)66
9.7	White Balance (컬러 카메라)67
	9.7.1 Auto White Balance
9.8	Gain 및 Black Level
9.9	Hot Pixel Correction
9.10	Dynamic Defective Pixel Correction69
9.11	Defective Pixel Correction70
	9.11.1 보정 방법
9.12	Flat Field Correction71
	9.12.1 Flat Field 보정 순서72
	9.12.2 Flat Field Data Selector
9.13	Digital I/O Control

9.14	Timer Control	81
9.15	Fan Control	82
9.16	Temperature Monitor	83
9.17	Status LED	83
9.18	Test Image	84
9.19	Reverse X	86
9.20	Device Reset	87
9.21	Field Upgrade	87
10장. Ca	mera Configuration	
10.1	설정 명령	88
10.2	명령어 실제 적용 시간	90
10.3	User Set Control	91
10.4	Sequencer Control	93
10.5	Command List	95
11장. Co	onfigurator GUI	102
11.1	Camera Scan	102
11.2	메뉴	103
	11.2.1 File	
	11.2.2 Start-Up	
	11.2.3 Tool	
	11.2.4 Acquisition	
	11.2.5 About	107
11.3	탭	
	11.3.1 VIEW 탭	
	11.3.2 MODE/EXP 탭	
	11.3.3 ANALOG 탭	110
	11.3.4 FFC 탭	111
	11.3.5 Digital I/O 탭	112
	11.3.6 FAN 탭	113

11.3.7 AWB 탭 (Color Camera Only)	
12장. 제품 동작 이상 확인 및 조치	
Appendix A. Defective Pixel Map Download	
Appendix B. Field Upgrade	
Appendix C. Index	

표 목차

표 5-1	VC-101MC/151MC 사양	21
표 7-1	Pin Assignments for Camera Link Connector 1	33
표 7-2	Pin Assignments for Camera Link Connector 2	34
표 7-3	Camera Link Tap Geometry별 커넥터 연결	34
표 7-4	전원 입력 단자의 핀 구성	35
표 7-5	컨트롤 입/출력 단자의 핀 구성	36
표 8-1	최소 및 최대 노출 시간 설정 값	51
표 8-2	VC-101MC 카메라의 Camera Link Tap Geometry별 Temporal Offset Values	53
표 8-3	VC-151MC 카메라의 Camera Link Tap Geometry별 Temporal Offset Values	53
표 8-4	Max. Allowed Exposure Time for Overlapped Operation of VC-101MC	55
표 8-5	Max. Allowed Exposure Time for Overlapped Operation of VC-151MC	55
표 9-1	Commands related to Image ROI	58
표 9-2	Minimum ROI Offset X, Offset Y, Width and Height Settings	60
표 9-3	VC-101MC Vertical ROI 크기에 따른 최대 프레임 속도(@ Pixel Clock 85배z)	60
표 9-4	VC-151MC Vertical ROI 크기에 따른 최대 프레임 속도(@ Pixel Clock 85배z)	60
표 9-5	Commands related to Binning	61
표 9-6	Command related to Pixel Format	63
표 9-7	Command related to Camera Link Tap Geometry	64
표 9-8	Command related to Camera Link Pixel Clock Speed	65
표 9-9	Commands related to AWB ROI	66
표 9-10	Command related to White Balance	67
표 9-11	Command related to Auto White Balance	67
표 9-12	2 Commands related to Gain and Black Level	68
표 9-13	3 Command related to Hot Pixel Correction Page 11 of 127	68

표 9-14	Commands related to Dynamic Defective Pixel Correction
표 9-15	Defect Pixel 보정 값 계산70
표 9-16	Commands related to Flat Field Correction71
표 9-17	Commands related to Digital I/O Control77
표 9-18	Command related to Debounce Time80
표 9-19	Command Parameters related to Timer Control81
표 9-20	Commands related to Fan Control82
표 9-21	Command related to Device Temperature83
표 9-22	Status LED
표 9-23	Commands related to Test Image
표 9-24	Command related to Reverse X
표 9-25	Command related to Device Reset
표 10-1	Commands related to User Set Control91
표 10-2	Commands related to Sequencer Control93
표 10-3	Command List #195
표 10-4	Command List #296
표 10-5	Command List #397
표 10-6	Command List #4
표 10-7	Command List #5
표 10-8	Command List #6
표 10-9	Command List #7101

그림 목차

그림 5-1	Camera Block Diagram	22
그림 5-2	VC-101MC-M8 Spectral Response	23
그림 5-3	VC-151MC-M5 Spectral Response	24
그림 5-4	VC-101MC-C8 Spectral Response	25
그림 5-5	VC-151MC-C5 Spectral Response	26
그림 5-6	Mechanical Dimension for VC-101MC-8 M72-mount	27
그림 7-1	VC-101MC 후면부	31
그림 7-2	VC-151MC 후면부	32
그림 7-3	Camera Link 커넥터	33
그림 7-4	전원 입력 단자의 핀 배치도	35
그림 7-5	컨트롤 입/출력 단자 핀 배치도	36
그림 7-6	Trigger Input Schematic	37
그림 7-7	Strobe Output Schematic	
그림 8-1	Exposure Start Triggering	
그림 8-2	Software 트리거 신호로 영상 획득하기	45
그림 8-3	External Trigger Delay	48
그림 8-4	Timed Exposure Mode	49
그림 8-5	Trigger Overlapped with Timed Exposure Mode	49
그림 8-6	Trigger Width Exposure Mode	50
그림 8-7	Rolling Shutter Operation	52
그림 8-8	Overlapped Exposure and Readout	54
그림 8-9	Non-overlapped Exposure and Readout	56
그림 9-1	Region of Interest	59
그림 9-2	2 × 2 Binning	62

그림	9-3	Camera Link Tap Geometry
그림	9-4	유효 데이터 ROI
그림	9-5	Dynamic Defective Pixel Correction
그림	9-6	보정할 Defect Pixel의 위치70
그림	9-7	Flat Field Correction in Configurator72
그림	9-8	Flat Field 데이터의 생성과 적용74
그림	9-9	Bilinear Interpolated Magnification74
그림	9-10	Flat Field Data Selector75
그림	9-11	User Output
그림	9-12	Exposure Active Signal
그림	9-13	Strobe Signal
그림	9-14	Debounce
그림	9-15	Timer Signal
그림	9-16	Test Image 1
그림	9-17	Test Image 285
그림	9-18	Test Image 385
그림	9-19	원본 영상
그림	9-20	Reverse X 영상86
그림	10-1	명령어 실제 적용 시간90
그림	10-2	User Set Control
그림	10-3	Sequencer Diagram (Use Case)94
그림	11-1	Configurator Loading Window102
그림	11-2	File 메뉴103
그림	11-3	Start-Up 메뉴104
그림	11-4	Tool 메뉴105
그림	11-5	Acquisition 메뉴106 Page 14 of 127

그림	11-6	About 메뉴	.107
그림	11-7	VIEW Tab	.108
그림	11-8	MODE/EXP Tab	.109
그림	11-9	ANALOG Tab	.110
그림	11-10	FFC Tab	.111
그림	11-11	Digital I/O Tab	.112
그림	11-12	FAN Tab	.113
그림	11-13	AWB Tab (Color Camera Only)	.114

1장. 주의사항

일반 주의사항

Caution!

- 본 제품을 떨어트리거나, 임의대로 분해하거나 개조하지 마십시오. 기기의 훼손이나 감전사고의 위험이 있습니다.
- 사용 안전을 위하여 어린이의 손이나 반려동물이 접근할 수 있는 곳에 보관하지 마십시오.
- 만약 부주의로 인해 액체나 이물질이 본 기기 내부로 들어갔을 경우 본 제품을 사용하지 마시고 즉시 전원을 끈 후, 판매처에 연락을 취해 협조를 구하십시오.
- 젖은 손으로 본 제품을 조작하지 마십시오. 감전 사고의 우려가 있습니다.
- 카메라의 온도가 5.2 Specification에서 표기한 온도 범위를 벗어나지 않는지 주의하십시오. 극한 기온으로 인해 제품이 손상될 수 있습니다.

설치 시 주의사항

`

Caution!

- 먼지와 모래가 많거나 더러운 장소, 혹은 에어컨 및 난로 가까이에 본 제품을 두지 마십시오. 제품이 손상될 수 있습니다.
 - 진동, 열, 습기, 먼지, 폭발 및 부식을 발생시키는 연무 또는 가스가 있는 극한 환경에서 설치 및 운용하지 마십시오.
 - 카메라에 진동 또는 충격을 가하지 마십시오. 제품이 손상될 수 있습니다.
 - 제품에 강한 조명이 직접 닿지 않도록 하십시오. 영상 센서가 손상될 수 있습니다.
 - 조명이 불안정한 곳에 제품을 설치하지 마십시오. 카메라에서 생성하는 영상 품질에 영향을 줄 수 있습니다.
 - 제품 표면을 닦을 때, 용액이나 희석제를 사용하지 마십시오. 제품이 손상될 수 있습니다.

전원 공급 주의사항

2장. 보증범위

다음과 같은 경우 보증범위에서 제외됩니다.

- 인정되지 않는 제조자, Agent, 기술자에 의한 서비스와 개조로 인한 장비의 고장 등에 대해 제조사는 책임을 지지 않습니다.
- 운영자의 과실로 인한 자료의 분실 및 훼손에 대해 제조사는 책임을 지지 않습니다.
- 사용자가 사용 목적 이외의 용도로 사용하거나 무리한 사용 또는 과실로 인한 파손 및 고장이 발생한 경우
- 잘못된 전원사용, 사용 설명서에 명시된 사용 조건에서 사용하지 않을 경우
- 벼락, 지진, 화재, 홍수 등으로 인한 자연재해
- 허가 없이 장비의 부품 및 소프트웨어를 교체하거나 개조하여 문제가 발생한 경우

제품 관련 기술 지원 및 서비스가 필요한 경우 판매처나 제조사로 문의하십시오. 보증기간은 제품 판매 시 보증서에 명기되어 있는 기간으로 하고, 장비가 출고된 이후부터 적용됩니다.

3장. 사용자 안내문

용도 구분	사용자 안내문
A급 기기 (업무용 방송통신기기)	이 기기는 업무용(A급)으로 전자파 적합 등록을 한 기기이오니 판매자 또는 사용자는 이점을 주의하시기 바라며, 가정 외의 지역에서 사용하는 것을 목적으로 합니다.

4장. 제품 구성

VEVOLVER OF OUR OF

Package Component

VC-101MC <M72-mount>

VC-151MC <M72-mount>

5장. 제품 규격

5.1 개요

VC-101MC/151MC 카메라는 산업 현장에서 입증된 VC 시리즈에 새로 추가된 101 및 151 메가픽셀 해상도의 Camera Link 카메라로 Sony Semiconductor Solutions Corporation의 최신 CMOS 영상 센서 기술(IMX461 및 IMX411)을 채용했습니다. VC-101MC-8 카메라는 11648 × 8742 해상도에서 최대 8.1 fps의 속도로 영상을 획득할 수 있습니다. 더 높은 해상도가 필요한 애플리케이션에서는 VC-151MC-5 카메라를 통해 14192 × 10640 해상도에서 최대 5.5 fps의 속도로 영상을 획득할 수 있습니다. 세계 최고의 FPD 제조사에서 인정한 뷰웍스의 혁신적인 기술을 통해 VC-101MC/151MC 카메라는 고속 영상 처리 기능과 함께 균일한 영상을 제공합니다. 고해상도와 함께 우수한 영상 균일도를 제공하는 VC-101MC/151MC 카메라는 FPD, PCB 및 반도체 검사 등의 까다로운 애플리케이션에 이상적입니다.

주요 특징

- High Speed 101 / 151 Megapixel CMOS Image Sensor
- Electronic Exposure Time Control (Rolling Shutter)
- Output Pixel Format: 8 / 10 / 12 bit
- Strobe Output
- Dynamic Defective Pixel Correction
- Camera Link Base / Medium / Full / 10 Tap
- Camera Link Tap Geometry: 2 Tap, 4 Tap, 8 Tap, 10 Tap
- Camera Link Clock Frequency Selector
- Gain / Black Level Control
- Test Image
- LVDS (RS-644) Serial Communication by Camera Link Interface
- Temperature Monitor
- Field Upgrade
- DSNU and PRNU Correction
- Flat Field Correction with Sequencer Control
- Hot Pixel Correction
- GenlCam Compatible XML based Control

5.2 Specification

VC-101MC/151MC 카메라의 사양은 다음과 같습니다.

Specifications		VC-101MC-M/C 8 H	VC-151MC-M/C 5 H	
Active Image (H × V)		11648 × 8742	14192 × 10640	
Sensor		Sony IMX461	Sony IMX411	
Sensor Type		Back-Illuminated CMOS Image Sensor		
Sensor Size (Diago	nal)	43.80 mm \times 32.87 mm (55 mm)	53.36 mm \times 40.01 mm (66.7 mm)	
Pixel size		3.76 µm × 3.76 µm		
Interface		Camera Link Base / Medium / Full / 10 Tap		
Electronic Shutter		Rolling Shutter		
Max. Frame Rate		2 Tap: 1.6 fps	2 Tap: 1.1 fps	
(Overlapped)		4 Tap: 3.2 fps	4 Tap: 2.2 fps	
		8 Tap: 6.5 fps	8 Tap: 4.4 fps	
		10 Tap: 8.1 fps	10 Tap: 5.5 fps	
Pixel Data Format		8 bit / 10 bit / 12 bit / 14 bit / 16 bit		
Exposure Time		1 μ s ~ 60 s (1 μ s step)		
Partial Scan (Max. Speed)		635 fps at 2 Lines	488 fps at 2 Lines	
Binning	Sensor	×1, ×3 (Horizontal and Vertical Dependent)		
	Logic	\times 1, \times 2, \times 4 (Horizontal and Vertical Independent)		
Black Level Contro	ol	0 ~ 255 LSB at 12 bit		
Gain Control		1× ~ 32×		
Trigger	Overlapped	Free-Run		
Synchronization	Non- overlapped	Hardware Trigger, Software Trigger, CC1 or User Output0		
External Trigger		3.3 V ~ 24.0 V Logical level input, Optically isolated		
Software Trigger		Asynchronous, Programmable via Camera API		
Dynamic Range		78 dB		
Lens Mount		M72-mount		
Power	External	11 ~ 24 V DC		
	Dissipation	Typ. 15.5 W		
Environmental		Operating: 0 ~ 40°C, Storage: -40°C ~ 70°C		
Dimension / Weight		$90mm \times 90mm \times 92.5mm$, $800g$ (with M72-mount)	100mm × 100mm × 92.5mm, 1070g (with M72-mount)	
Configuration SW		Configurator / Vieworks Imaging Solution 7.X		

표 5-1 VC-101MC/151MC 사양

5.3 Camera Block Diagram

그림 5-1 Camera Block Diagram

카메라의 모든 컨트롤과 데이터 처리는 하나의 FPGA 칩 내에서 이루어집니다. FPGA 내부는 크게 Softcore 형태의 32비트 RISC 마이크로프로세서와 프로세싱 & 컨트롤 로직으로 이루어져 있습니다. 마이크로프로세서는 Camera Link 인터페이스를 통하여 사용자로부터 명령을 받고 이를 처리합니다.

프로세싱 & 컨트롤 로직은 CMOS 센서에서 전달된 영상 데이터를 처리하여 Camera Link 인터페이스로 내보내고, 시간에 민감한 트리거 입력과 스트로브 출력의 컨트롤을 담당합니다. 이 밖에, FPGA의 외부에는 마이크로 컨트롤러의 작동을 위한 Flash와 영상 처리를 위한 DDR3이 장착되어 있습니다.

5.4 스펙트럼 응답 특성

5.4.1 흑백 카메라 스펙트럼 응답 특성

다음 그래프는 VC-101MC 흑백 카메라에 대한 스펙트럼 응답 특성을 보여줍니다.

그림 5-2 VC-101MC-M8 Spectral Response

다음 그래프는 VC-151MC 흑백 카메라에 대한 스펙트럼 응답 특성을 보여줍니다.

그림 5-3 VC-151MC-M5 Spectral Response

5.4.2 컬러 카메라 스펙트럼 응답 특성

다음 그래프는 VC-101MC 컬러 카메라에 대한 스펙트럼 응답 특성을 보여줍니다.

그림 5-4 VC-101MC-C8 Spectral Response

다음 그래프는 VC-151MC 컬러 카메라에 대한 스펙트럼 응답 특성을 보여줍니다.

그림 5-5 VC-151MC-C5 Spectral Response

5.5 Mechanical Specification

다음 도면은 밀리미터 단위의 카메라 치수를 나타냅니다.

그림 5-6 Mechanical Dimension for VC-101MC-8 M72-mount

Figure 5.1 Mechanical Dimension for VC-151MC-5 M72-mount

6장. 카메라 연결 방법

다음 설명은 사용자의 PC에 Camera Link Frame Grabber와 관련 소프트웨어가 설치되어 있다고 가정합니다. 자세한 내용은 Camera Link Frame Grabber 사용 설명서를 참조하십시오.

다음 절차에 따라 사용자 PC에 카메라를 연결합니다.

- 1. 카메라와 전원 공급 장치가 분리되어 있는지, PC의 전원이 꺼져 있는지 확인하십시오.
- 2. Camera Link 케이블의 한쪽 끝을 카메라의 Camera Link1 커넥터에 꽂고 다른 끝은 Camera Link Frame Grabber의 Base 커넥터에 연결합니다.
- **3.** 다른 Camera Link 케이블의 한쪽 끝을 카메라의 Camera Link2 커넥터에 꽂고 다른 끝은
Camera Link Frame Grabber의 Medium/Full 커넥터에 연결합니다.
- 4. 전원 어댑터의 플러그를 전기 콘센트에 꽂습니다.
- 5. 모든 케이블이 제대로 연결되었는지 확인합니다.

Camera Link Medium / Full / 10 Tap Configuration 사용 시 주의사항

Caution!

VC-101MC/151MC 카메라는 Camera Link Base/Medium/Full/10 Tap Configuration을 지원합니다. Camera Link Medium, Full 또는 10 Tap Configuration으로 카메라를 사용하려면 두 개의 Camera Link 케이블을 사용하여 카메라와 Camera Link Frame Grabber를 연결해야 합니다. 이때, 카메라의 Camera Link1 커넥터는 Camera Link Frame Grabber의 Base Configuration용 커넥터에 연결하고, Camera Link2 커넥터는 Camera Link Frame Grabber의 Medium/Full Configuration용 커넥터에 연결해야 합니다.

6.1 센서 중심 조정에 대한 주의사항

- 출하 시 중심이 맞춰진 상태이기 때문에 따로 조정이 필요 없습니다.
- 부득이하게 조정이 필요한 경우에는 제조사 또는 판매처에 문의하십시오.

6.2 중심대비 주변상 흐림에 대한 주의사항

- 출하 시 Tilt 조정이 되어 있기 때문에 따로 조정이 필요 없습니다.
- 부득이하게 조정이 필요한 경우에는 제조사 또는 판매처에 문의하십시오.

6.3 카메라 제어

- Configurator.exe 파일을 실행하여 카메라를 제어할 수 있습니다.
- 최신 Configurator를 <u>http://vision.vieworks.com</u>에서 다운로드할 수 있습니다.
- 사용하는 Camera Link Frame Grabber 사용 설명서를 참조하십시오.

7장. Camera Interface

7.1 General Description

카메라의 후면부에는 4종류의 커넥터와 상태 표시 LED가 있으며 각각의 기능은 다음과 같습니다.

- Status LED: 전원 상태 및 작동 모드 표시
- ② 6핀 전원 입력 단자: 카메라 전원 입력
- ③ 4핀 컨트롤 입/출력 단자: 외부 트리거 신호 입력 및 Strobe 출력
- ④ 26핀 SDR 커넥터 1 (Company Link Pape): 비디오 데이티 저소
 - (Camera Link Base): 비디오 데이터 전송 및 카메라 제어
- ⑤ 26핀 SDR 커넥터 2

(Camera Link Medium/Full): 비디오 데이터 전송

그림 7-1 VC-101MC 후면부

그림 7-2 VC-151MC 후면부

7.2 Camera Link SDR 커넥터

그림 7-3 Camera Link 커넥터

카메라 출력은 카메라 링크 표준(Camera Link Standard)을 따르며, 커넥터의 핀 구성은 다음 표와 같습니다.

PAIR List	Pin	Signal Name	Туре	Description
PAIR 0	1	Ground	Ground	Cable Shield
	14	Ground	Ground	Cable Shield
PAIR 1	2	-X0	LVDS - Out	Camera Link Transmitter
	15	+X0	LVDS - Out	Camera Link Transmitter
PAIR 2	3	-X1	LVDS - Out	Camera Link Transmitter
	16	+X1	LVDS - Out	Camera Link Transmitter
PAIR 3	4	-X2	LVDS - Out	Camera Link Transmitter
	17	+X2	LVDS - Out	Camera Link Transmitter
PAIR 4	5	-XCLK	LVDS - Out	Camera Link Transmitter
	18	+XCLK	LVDS - Out	Camera Link Transmitter
PAIR 5	6	-X3	LVDS - Out	Camera Link Transmitter
	19	+X3	LVDS - Out	Camera Link Transmitter
PAIR 6	7	+ SerTC	LVDS - In	Serial Data Receiver
	20	- SerTC	LVDS - In	Serial Data Receiver
PAIR 7	8	- SerTFG	LVDS - Out	Serial Data Transmitter
	21	+ SerTFG	LVDS - Out	Serial Data Transmitter
PAIR 8	9	- CC 1	LVDS - In	Software External Trigger
22	22	+ CC 1	LVDS - In	Software External Trigger
PAIR 9	10	N/C	N/C	N/C
	23	N/C	N/C	N/C
PAIR 10	11	N/C	N/C	N/C
	24	N/C	N/C	N/C
PAIR 11	12	N/C	N/C	N/C
	25	N/C	N/C	N/C
PAIR 12	13	Ground	Ground	Cable Shield
	26	Ground	Ground	Cable Shield

표 7-1 Pin Assignments for Camera Link Connector 1

PAIR List	Pin	Signal Name	Туре	Description
PAIR 0	1	Ground	Ground	Cable Shield
	14	Ground	Ground	Cable Shield
PAIR 1	2	-Y0	LVDS - Out	Camera Link Transmitter
	15	+Y0	LVDS - Out	Camera Link Transmitter
PAIR 2	3	-Y1	LVDS - Out	Camera Link Transmitter
	16	+Y]	LVDS - Out	Camera Link Transmitter
PAIR 3	4	-Y2	LVDS - Out	Camera Link Transmitter
	17	+Y2	LVDS - Out	Camera Link Transmitter
PAIR 4	5	-YCLK	LVDS - Out	Camera Link Transmitter
	18	+YCLK	LVDS - Out	Camera Link Clock Tx
PAIR 5	6	-Y3	LVDS - Out	Camera Link Channel Tx
	19	+Y3	LVDS - Out	Camera Link Channel Tx
PAIR 6	7	-	Not Used	Connected with 100 ohm
	20	-	Not Used	
PAIR 7 8	8	-Z0	LVDS - Out	Camera Link Transmitter
	21	+ZO	LVDS - Out	Camera Link Transmitter
PAIR 8	9	-Z1	LVDS - Out	Camera Link Transmitter
	22	+Z1	LVDS - Out	Camera Link Transmitter
PAIR 9	10	-72	LVDS - Out	Camera Link Transmitter
	23	+Z2	LVDS - Out	Camera Link Transmitter
PAIR 10	11	-ZCLK	LVDS - Out	Camera Link Transmitter
	24	+ZCLK	LVDS - Out	Camera Link Clock Tx
PAIR 11	12	-Z3	LVDS - Out	Camera Link Channel Tx
	25	+Z3	LVDS - Out	Camera Link Channel Tx
PAIR 12	13	Ground	Ground	Cable Shield
	26	Ground	Ground	Cable Shield

표 7-2 Pin Assignments for Camera Link Connector 2

Model	Camera Link Tap Geometry	CL Configuration	CL Connector 1	CL Connector 2
VC-101MC	2 Tap	BASE	0	Х
VC-151MC	4 Tap	MEDIUM	0	0
	8 Tap	FULL	0	0
	10 Tap	10 Tap	0	0

표 7-3 Camera Link Tap Geometry별 커넥터 연결

Note:

í

Camera Link 케이블을 사용하여 Frame Grabber와 Camera Link 커넥터를 연결할 때 연결 위치에 주의해야 합니다. Connector 1과 Connector2의 위치가 바뀌면 카메라의 영상이 제대로 출력되지 않거나 PC와 카메라의 Serial 통신이 정상적으로 수행되지 않습니다.

7.3 전원 입력 단자

카메라의 전원 입력 단자(Power Input Receptacle)는 Hirose 6핀 커넥터(part # HR10A-7R-6PB)이며 핀 배치 및 구성은 다음과 같습니다.

그림 7-4 전원 입력 단자의 핀 배치도

Pin Number	Signal	Туре	Description
1, 2, 3	+12V DC	Input	DC Power Input
4, 5, 6	DC Ground	Input	DC Ground

표 7-4 전원 입력 단자의 핀 구성

i) Note:

- Hirose 6핀 커넥터에 권장되는 메이팅(mating) 커넥터는 Hirose 6핀 플러그 (part # HR10A-7P-6S) 또는 동종의 커넥터입니다.
- 외부 전원 공급 장치는 11 ~ 24 V 전압 출력에 3A 이상 전류 출력을 가지는 전원 어댑터의 사용을 추천합니다(※ 제조사 ㈜뷰웍스는 어댑터를 제공하지 않음).

전원 입력 시 주의사항

7.4 컨트롤 입/출력 단자

컨트롤 입/출력 단자(Control I/O Receptacle)는 Hirose 4핀 커넥터(part # HR10A-7R-4S)이며, 외부 트리거 신호 입력과 스트로브 출력 포트로 구성되어 있습니다. 핀 배치 및 구성은 다음과 같습니다.

그림 7-5 컨트롤 입/출력 단자 핀 배치도

Pin Number	Signal	Туре	Description
1	Trigger Input +	Input	3.3 V ~ 24.0 V TTL input
2	Trigger Input -	Input	-
3	DC Ground	-	DC Ground
4	Line1 Output	Output	3.3 V TTL Output Output resistance: 47 Ω

표 7-5 컨트롤 입/출력 단자의 핀 구성

Note:

Hirose 6핀 커넥터에 권장되는 메이팅(mating) 커넥터는 Hirose 6핀 플러그 (part # HR10A-7P-6S) 또는 동종의 커넥터입니다.
VIEWOLKS

7.5 Trigger Input Circuit

아래 그림은 4핀 커넥터의 트리거 신호 입력 회로를 나타내고 있습니다. 트리거 입력 신호는 포토 커플러를 통해 내부 회로로 전달됩니다. Debounce 기능을 사용하여 카메라에서 유효한 입력 신호로 판단할 입력 신호의 폭을 지정할 수 있습니다. 외부 트리거 신호의 입력은 아래의 회로도와 같이 신호를 공급할 수 있습니다.

7.6 Strobe Output Circuit

스트로브 출력 신호는 3.3 V 출력 레벨의 TTL Driver IC를 통해서 출력되며 신호의 펄스 폭은 카메라의 Exposure Signal(shutter)과 동기되어 출력됩니다.

그림 7-7 Strobe Output Schematic

8장. Acquisition Control

이 장에서는 영상 획득을 제어하는 데 필요한 다음과 같은 항목에 대해 자세한 정보를 제공합니다.

- 영상 획득 트리거 방법
- 노출 시간 설정
- Frame rate 제어
- 카메라 설정에 따른 최대 frame rate 변화

8.1 개요

이 절에서는 영상을 획득하는 데 필요한 요소에 대해 간략하게 설명합니다.

영상 획득을 제어하는 데 필요한 중요한 세 가지 요소는 다음과 같습니다.

- Acquisition Start/Stop 명령 및 Acquisition Mode 파라미터
- Exposure start(노출 시작) 트리거
- 노출 시간 제어

Note:
이 장의 설명에 나오는 프레임은 일반적으로 획득한 한 장의 영상을 의미합니다.

Acquisition Start/Stop 명령 및 Acquisition Mode

Acquisition Start('ast') 명령을 실행하면 카메라는 영상 획득을 준비합니다. Acquisition Start 명령을 실행하지 않으면 카메라는 영상을 획득할 수 없습니다.

Acquisition Mode 파라미터는 Acquisition Start 명령의 작동 방법에 직접적인 영향을 미치고, VC-101MC/151MC 카메라는 Continuous만 지원합니다.

Acquisition Mode 파라미터를 Continuous로 설정하면 한 장의 영상을 획득한 후에도 Acquisition Start 명령은 만료되지 않습니다. Acquisition Start 명령을 실행한 후 원하는 만큼 영상을 획득할 수 있습니다.

Acquisition Start 명령은 Acquisition Stop('asp') 명령을 실행하기 전까지 계속 유지됩니다. Acquisition Stop 명령을 실행하면 카메라는 Acquisition Start 명령을 새로 실행하기 전까지 영상을 획득할 수 없습니다.

Exposure Start 트리거

Exposure Start 트리거 신호를 카메라에 공급하면 카메라는 Exposure Start 트리거 획득 대기 상태를 해제한 후 노출 과정을 진행하고 프레임을 readout합니다(그림 8-1). 카메라가 다음 Exposure Start 트리거 신호를 받아들일 상태가 되면 카메라는 Exposure Start 트리거 획득 대기 상태로 되돌아갑니다. 이 상태에서 새로운 Exposure Start 트리거 신호를 카메라에 공급하면 카메라는 다음 노출을 시작합니다.

Exposure Start Trigger는 다음과 같이 두 가지 모드로 설정할 수 있습니다.

Trigger Mode 파라미터를 Off('stm 0')로 설정하면 카메라는 필요한 exposure start 트리거를 내부에서 발생시키므로 사용자가 exposure start 신호를 공급할 필요가 없습니다. 카메라에서 발생하는 신호와 영상을 획득하는 속도는 frame rate 관련 파라미터의 설정에 따라서 결정됩니다.

Trigger Mode 파라미터를 On('stm 1')으로 설정하면 사용자가 카메라에 exposure start 트리거 신호를 공급해서 카메라가 노출 과정을 시작하도록 해야 합니다. 트리거 신호가 공급될 때마다 카메라는 노출 과정을 시작합니다. 이러한 방법으로 노출 과정이 진행될 때, 허용 가능한 최대 frame rate보다 빠른 속도로 트리거 신호를 공급하면 안 됩니다(허용 가능한 최대 frame rate는 이 장 끝에서 설명). 카메라가 Exposure Start 트리거 획득 대기 상태가 아닐 때 트리거 신호를 공급하면 해당 신호는 무시됩니다.

: Frame exposure and readout

: Frame transmission

i

그림 8-1 Exposure Start Triggering

트리거 신호 공급

앞의 절에서는 "트리거 신호 공급"에 대해서 얘기하고 있습니다. Exposure start 트리거 신호를 카메라에 공급하는 방법에는 Software, User OutputO, CC1 또는 LineO(흔히 Hardware라고 함) 네 가지가 있습니다.

Software를 통해서 트리거 신호를 공급하려면 Trigger Source 파라미터를 Software('sts 3')로 설정해야 합니다. 그런 다음 Trigger Software('gst') 명령을 실행할 때마다 exposure start 트리거 신호가 카메라에 공급됩니다.

사용자 설정(User Output) Exposure Start 트리거 신호를 카메라에 공급하려면 Trigger Source 파라미터를 User OutputO('sts 10')으로 설정해야 합니다. 그런 다음 User Output Value 파라미터('suov 1/0')를 On(상승) 또는 Off(하강)로 전환하여 Exposure Start 트리거 신호를 카메라에 공급할 수 있습니다.

Camera Link Frame Grabber를 통해서 트리거 신호를 공급하려면 Trigger Source 파라미터를 CC1('sts 14')으로 설정해야 합니다. 그런 다음 Camera Link Frame Grabber 제조사에서 제공하는 API를 활용하여 외부에서 생성한 전기 신호를 exposure start 트리거 신호로서 카메라에 공급할 수 있습니다. 자세한 내용은 Camera Link Frame Grabber 사용 설명서를 참조하십시오.

Hardware를 통해서 트리거 신호를 공급하려면 Trigger Source 파라미터를 LineO('sts 22')으로 설정해야 합니다. 그런 다음 적절한 전기 신호를 카메라에 공급하면 발생된 exposure start 트리거 신호를 카메라에서 인식하게 됩니다.

노출 시간 제어

Exposure start 트리거 신호를 카메라에 공급하면 카메라는 영상 획득을 시작합니다. 영상 획득 과정에서 중요한 요소는 영상을 획득하는 동안 카메라 센서의 픽셀이 빛에 노출되는 시간입니다. 카메라의 Trigger Source를 Software로 설정하면 Exposure Time 파라미터에 의해 각 영상의 노출 시간이 결정됩니다.

카메라의 Trigger Source를 User OutputO, CC1 또는 LineO으로 설정하면 Timed와 Trigger Width 두 가지 방법으로 Exposure Mode를 설정할 수 있습니다. Timed로 설정하면 Exposure Time 파라미터에 의해 각 영상의 노출 시간이 결정되고, Trigger Width로 설정하면 사용자가 User Output, CC1 또는 Hardware 신호의 상승(rising)과 하강(falling)을 조작함에 따라 노출 시간이 결정됩니다. Trigger Width 모드는 영상마다 다른 노출 시간을 적용할 때 유용합니다.

8.2 Acquisition Start/Stop 명령 및 Acquisition Mode

Acquisition Start('ast') 명령을 실행하면 카메라는 영상 획득을 준비합니다. Acquisition Start 명령을 실행하지 않으면 카메라는 영상을 획득할 수 없습니다.

Acquisition Stop('asp') 명령을 실행하면 카메라의 영상 획득 기능을 종료합니다. Acquisition Stop 명령을 실행하면 카메라는 다음과 같이 작동합니다.

- 카메라가 영상 획득 과정을 진행하고 있지 않으면 즉시 영상 획득 기능을 종료합니다.
- 카메라가 영상 획득 과정을 진행하고 있으면 진행 중인 영상 획득 과정을 완료하고 새 영상 획득 기능 을 종료합니다.

Note:

1

카메라의 영상 획득 기능을 완전히 종료하기 전에 Acquisition Start 명령을 다시 실행하면, 해당 명령은 카메라에서 무시될 수 있습니다. 이러한 문제를 방지하려면 Acquisition Stop 명령을 실행하고 최소 readout 시간(표 8-2 또는 표 8-3 참조)을 기다린 다음 Acquisition Start 명령을 실행하십시오.

VC-101MC/151MC 카메라에서는 Continuous 한 가지 방법으로 Acquisition Mode를 설정할 수 있습니다. Acquisition Start 명령을 실행한 후 원하는 만큼 exposure start 트리거 신호를 수신할 수 있습니다. 카메라가 Exposure Start 트리거 획득 대기 상태에서 exposure start 트리거 신호를 수신할 때마다 카메라는 영상을 획득하고 전송합니다. 카메라는 Acquisition Stop 명령을 실행할 때까지 계속해서 영상을 획득합니다. Acquisition Stop 명령을 실행하면 더 이상 영상을 획득할 수 없습니다.

8.3 Exposure Start 트리거

Exposure Start 트리거는 영상 획득을 시작하는 데 사용됩니다. Exposure Start 트리거는 카메라 내부에서 생성하거나 Trigger Source를 Software, User OutputO, CC1 또는 LineO으로 설정하여 외부에서 공급할 수도 있습니다. Exposure Start 트리거 신호를 카메라에 공급하면 카메라는 노출 과정을 시작합니다.

8.3.1 Trigger Mode

Exposure Start 트리거와 관련된 가장 중요한 파라미터는 Trigger Mode('stm 0/1') 파라미터입니다. Trigger Mode 파라미터는 Off 또는 On으로 설정할 수 있습니다.

Acquisition Start 명령('ast')을 실행한 후에는 Trigger Mode 파라미터를 변경할 수 없습니다. Acquisition Stop 명령('asp')을 실행한 후 Trigger Mode 파라미터를 변경하십시오.

Trigger Mode = Off

Trigger Mode 파라미터를 Off('stm 0')로 설정하면 필요한 모든 Exposure Start 트리거 신호를 카메라 내부에서 생성하기 때문에 사용자는 카메라에 Exposure Start 트리거 신호를 공급할 필요가 없습니다.

Trigger Mode를 Off로 설정한 후 Acquisition Start 명령을 실행하면 카메라는 자동으로 Exposure Start 트리거 신호를 생성합니다. 카메라는 Acquisition Stop 명령을 실행할 때까지 계속해서 Exposure Start 트리거 신호를 생성합니다.

Free-Run

Trigger Mode 파라미터를 Off로 설정하면 카메라 내부에서 필요한 모든 트리거 신호를 생성합니다. 이와 같이 카메라를 설정하면 사용자가 필요한 트리거를 주입하지 않아도 계속해서 영상을 획득합니다. 이러한 사용 방법을 흔히 "free run"이라고 합니다.

카메라에서 Exposure Start 트리거 신호를 생성하는 속도는 Frame Rate('sfr n') 파라미터에 의해 결정될 수 있습니다.

- 현재 카메라 설정에서 허용 가능한 최대 frame rate보다 적은 값으로 설정하면 지정한 frame rate로 Exposure Start 트리거 신호를 생성합니다.
- 현재 카메라 설정에서 허용 가능한 최대 frame rate보다 큰 값으로 설정하면 카메라는 허용 가능한 최대 frame rate로 Exposure Start 트리거 신호를 생성합니다.

Trigger Mode = Off일 때 노출 시간 제어

Trigger Mode 파라미터를 Off로 설정하면 각 영상 획득에 대한 노출 시간은 Exposure Time 파라미터('set n')의 값에 의해 결정됩니다. 자세한 내용은 8.4 노출 시간 설정을 참조하십시오.

Trigger Mode = On

Trigger Mode 파라미터를 On('stm 1')으로 설정하면 사용자는 영상 획득을 시작하려고 할 때마다 카메라에 Exposure Start 트리거 신호를 공급해야 합니다. Trigger Source 파라미터('sts 3/10/14/22')는 Exposure Start 트리거 신호 역할을 할 소스 신호(source signal)를 지정합니다. 설정 가능한 Trigger Source 파라미터는 다음과 같습니다.

- Software: 사용자 컴퓨터에서 Trigger Software 명령('gst')을 실행하여 카메라에 Exposure Start 트 리거 신호를 공급할 수 있습니다.
- User OutputO: 사용자 컴퓨터에서 User Output Value 파라미터를 On 또는 Off('suov 1/0')로 설정 하여 Exposure Start 트리거 신호를 공급할 수 있습니다.
- CC1: Camera Link 인터페이스의 CC1을 통해서 카메라에 Exposure Start 트리거 신호를 공급할 수 있 습니다. 자세한 내용은 Camera Link Frame Grabber 사용 설명서를 참조하십시오.
- LineO: 외부에서 생성된 전기 신호(흔히 하드웨어 또는 External 트리거 신호라고 함)를 카메라의 컨 트롤 입/출력 단자에 주입하여 카메라에 Exposure Start 트리거 신호를 공급할 수 있습니다. 자세한 내 용은 7.5 Trigger Input Circuit를 참조하십시오.
- TimerOActive: 사용자 설정 Timer 신호를 Exposure Start 트리거 신호로 공급할 수 있습니다. Digital I/O 범주에서 Timer Trigger Source 파라미터를 LineO('stts 22')으로 설정한 다음 Timer Delay 파라 미터('stdl n')를 설정하면 LineO 신호에 지연 시간을 설정할 수 있습니다. 자세한 내용은 9.14 Timer Control을 참조하십시오.

Trigger Source 파라미터를 설정한 후 Trigger Activation 파라미터('sta 0/1')도 설정해야 합니다. 설정 가능한 Trigger Activation 파라미터는 다음과 같습니다.

- Falling Edge: 전기 신호의 하강 에지(falling edge)를 Exposure Start 트리거로 작동하도록 지정합니다.
- Rising Edge: 전기 신호의 상승 에지(rising edge)를 Exposure Start 트리거로 작동하도록 지정합니다.

Trigger Mode = On일 때 노출 시간 제어

Trigger Mode 파라미터를 On으로 설정하고 Trigger Source 파라미터를 Software로 설정한 경우 각 영상 획득에 대한 노출 시간은 Exposure Time 파라미터의 설정 값에 의해 결정됩니다.

Trigger Mode 파라미터를 On으로 설정하고 Trigger Source 파라미터를 CC1 또는 LineO으로 설정한 경우 각 영상에 대한 노출 시간은 다음과 같이 Exposure Mode 파라미터 설정에 따라서 결정됩니다.

- Exposure Mode = Timed: Exposure Time 파라미터에 의해 노출 시간이 제어됩니다.
- Exposure Mode = Trigger Width: 외부 트리거 신호를 조작하여 노출 시간을 제어할 수 있습니다.

Trigger Mode 파라미터를 On으로 설정하고 Trigger Source 파라미터를 User OutputO으로 설정한 경우 각 영상에 대한 노출 시간은 다음과 같이 Exposure Mode 파라미터 설정에 따라서 결정됩니다.

- Exposure Mode = Timed: Exposure Time 파라미터에 의해 노출 시간이 제어됩니다.
- Exposure Mode = Trigger Width: User Output Value 파라미터를 On 및 Off로 전환하여 노출 시간 을 제어할 수 있습니다.

8.3.2 Software 트리거 신호 사용하기

Trigger Mode 파라미터를 On('stm 1')으로 설정하고 Trigger Source 파라미터를 Software('sts 3')로 설정한 경우 카메라에 소프트웨어 트리거 신호(exposure start)를 공급해야 영상 획득을 시작할 수 있습니다. 카메라가 *Exposure Start 트리거 획득 대기 상태*에 있는 경우 카메라에서 소프트웨어 트리거 신호를 수신하면 노출을 시작하게 됩니다. 아래 그림에서는 소프트웨어 트리거 신호에 의한 영상 획득을 나타냅니다. 카메라에서 소프트웨어 트리거 신호를 수신한 다음 노출을 시작하면 카메라는 *Exposure Start 트리거 획득 대기 상태*를 해제하고 새로운 Exposure Start 트리거 신호에 반응할 수 없습니다. 카메라에서 다시 새로운 Exposure Start 트리거 신호에 반응할 수 있게 되면 카메라는 자동으로 Exposure Start 트리거 획득 대기 상태로 되돌아갑니다.

각 영상의 노출 시간은 Exposure Time 파라미터('set n')에 의해 결정됩니다.

그림 8-2 Software 트리거 신호로 영상 획득하기

소프트웨어 트리거 신호를 사용하여 영상을 획득하면 사용자가 카메라에 소프트웨어 트리거 신호를 공급하는 빈도에 따라서 frame rate가 결정됩니다. 이때, 현재 카메라 설정에서 허용 가능한 최대 frame rate를 초과하는 속도로 트리거 신호를 공급하면 안 됩니다(허용 가능한 최대 frame rate는 이 장 끝에서 설명). 카메라가 *Exposure Start 트리거 획득 대기 상태*가 아닐 때 수신하는 소프트웨어 트리거 신호는 무시됩니다.

8.3.3 CC1 트리거 신호 사용하기

Trigger Mode 파라미터를 On('stm 1')으로 설정하고 Trigger Source 파라미터를 CC1('sts 14')로 설정한 경우 카메라에 CC1 트리거 신호(exposure start)를 공급해야 영상 획득을 시작할 수 있습니다. CC1 트리거 신호는 카메라의 Exposure Start 트리거 신호 역할을 수행합니다. 자세한 내용은 Camera Link Frame Grabber 사용 설명서를 참조하십시오.

CC1 신호의 상승 에지(rising edge) 또는 하강 에지(falling edge)를 영상 획득 트리거로 사용할 수 있습니다. Trigger Activation 파라미터('sta 1/0')에서 상승 에지 또는 하강 에지를 트리거로 설정할지 선택합니다. 카메라가 *Exposure Start 트리거 획득 대기 상태*에 있는 경우 수신하는 트리거 신호가 적절하게 전이(transition)할 때마다 영상 획득을 시작합니다.

카메라에서 CC1 트리거 신호를 수신한 후 노출을 시작하면 *Exposure Start 트리거 획득 대기 상태*를 해제하고 새로운 Exposure Start 트리거 신호에 반응할 수 없습니다. 카메라에서 다시 새로운 Exposure Start 트리거 신호에 반응할 수 있게 되면 카메라는 자동으로 *Exposure Start 트리거 획득 대기 상태*로 되돌아갑니다. 카메라가 CC1 신호의 제어에 의해 작동하는 경우에는 CC1 트리거 신호의 주기에 의해 다음과 같이 frame rate가 결정됩니다.

1 CC1 signal period in seconds = Frame Rate

예를 들어, 500ms(0.5초) 주기의 CC1 트리거 신호로 카메라를 작동하면 frame rate는 2 fps입니다.

8.3.4 External 트리거 신호 사용하기

Trigger Mode 파라미터를 On('stm 1')으로 설정하고 Trigger Source 파라미터를 LineO('sts 22')으로 설정한 경우 컨트롤 입/출력 단자에 주입되는 외부에서 생성한 전기 신호가 카메라의 Exposure Start 트리거 신호 역할을 수행합니다. 이런 유형의 트리거 신호를 일반적으로 하드웨어 트리거 신호라고도 합니다.

외부 신호의 상승 에지(rising edge) 또는 하강 에지(falling edge)를 영상 획득 트리거로 사용할 수 있습니다. Trigger Activation 파라미터('sta 1/0')에서 상승 에지 또는 하강 에지를 트리거로 설정할지 선택합니다.

카메라가 Exposure Start 트리거 획득 대기 상태에 있는 경우 수신하는 트리거가 적절하게 전이(transition)할 때마다 영상 획득을 시작합니다.

카메라에서 외부 트리거 신호를 수신한 후 노출을 시작하면 Exposure Start 트리거 획득 대기 상태를 해제하고 새로운 Exposure Start 트리거 신호에 반응할 수 없습니다. 카메라에서 다시 새로운 Exposure Start 트리거 신호에 반응할 수 있게 되면 카메라는 자동으로 Exposure Start 트리거 획득 대기 상태로 되돌아갑니다.

카메라가 외부 신호의 제어에 의해 작동하는 경우에는 외부 트리거 신호의 주기에 의해 다음과 같이 frame rate가 결정됩니다.

External signal period in seconds = Frame Rate

예를 들어, 500 ms(0.5 초) 주기의 외부 트리거 신호로 카메라를 작동하면 frame rate는 2 fps입니다.

External Trigger Delay

Trigger Source 파라미터를 TimerOActive('sts 18')로 설정하면 카메라에서 하드웨어 트리거 신호를 수신한 시점과 실제 적용되는 시점 사이에 지연 시간을 설정할 수 있습니다.

- 1. Digital I/O 범주에서 Timer Trigger Source 파라미터를 LineO('stts 22')로 설정합니다.
- 2. Timer Delay 파라미터('stdl n')를 사용하여 지연 시간을 설정합니다.
- 3. MODE/EXP 범주에서 Trigger Source 파라미터를 TimerOActive('sts 18')로 설정합니다.
- 4. Acquisition Start 명령('ast')을 실행하고 카메라의 컨트롤 입/출력 단자에 외부에서 생성한 전기 신호를 공급하면, Timer Delay 파라미터에 설정한 지연 시간이 만료된 후 영상 획득을 위한 노출을 시작합니다.

Time

그림 8-3 External Trigger Delay

8.3.5 Exposure Mode

외부에서 생성된 트리거 신호(CC1 또는 External)를 영상 획득 트리거로 사용하는 경우에는 Timed 및 Trigger Width 두 가지 유형의 노출 모드('sem 0/1' 또는 'ses 0/1')를 사용할 수 있습니다.

Timed 노출 모드

Timed 모드('sem 0' 또는 'ses 0')를 선택하면 각 영상 획득의 노출 시간이 Exposure Time 파라미터('set n')에 의해 결정됩니다. 상승 에지(rising edge) 트리거로 설정하면 외부 트리거 신호가 상승할 때 노출 시간이 시작되고, 하강 에지(falling edge) 트리거로 설정하면 외부 트리거 신호가 하강할 때 노출 시간이 시작됩니다. 아래 그림은 상승 에지(rising edge) 트리거로 설정한 Timed 노출 모드를 나타냅니다.

Page 49 of 127

Trigger Width 노출 모드

Trigger Width 노출 모드('sem 1' 또는 'ses 1')를 선택하면 각 영상 획득의 노출 구간을 외부 트리거 신호(CC1 또는 External)로 직접 제어할 수 있습니다. 상승 에지(rising edge) 트리거로 설정하면 외부 트리거 신호가 상승할 때 노출을 시작하고, 노출 구간은 신호가 하강할 때까지 계속됩니다. 하강 에지(falling edge) 트리거로 설정하면 외부 트리거 신호가 하강할 때 노출을 시작하고, 노출 구간은 신호가 상승할 때까지 계속됩니다. 아래 그림은 상승 에지(rising edge) 트리거로 설정한 Trigger Width 노출 모드를 나타냅니다.

Trigger Width 노출은 영상마다 다른 노출 구간을 적용할 때 유용합니다.

그림 8-6 Trigger Width Exposure Mode

8.4 노출 시간 설정

이 절에서는 Exposure Time 파라미터를 설정하여 노출 시간을 어떻게 조절하는지 설명합니다. 카메라를 다음과 같은 방식으로 작동할 때에는 Exposure Time 파라미터('set n')를 설정하여 노출 시간을 지정해야 합니다.

- Trigger Mode를 Off('stm 0')로 설정
- Trigger Mode는 On('stm 1'), Trigger Source는 Software('stm 3')로 설정
- Trigger Mode는 On('stm 1'), Trigger Source는 CC1('sts 14') 또는 LineO('sts 22'), Exposure Mode 는 Timed('sem 0 또는 ses 0')로 설정

Exposure Time 파라미터는 허용 가능한 최소값보다 적게 설정하면 안 됩니다. Exposure Time 파라미터는 마이크로세컨드(μs) 단위로 노출 시간을 설정합니다. 카메라의 허용 가능한 최소 및 최대 노출 시간은 다음과 같습니다.

Camera Model	최소 노출 시간	최대 노출 시간†
VC-101MC VC-151MC	1 μs	60,000,000 µs
†: Exposure Mode를 Trigg 최대 제한은 없습니다.	ger Width로 설정한 경우 노출 시간은	트리거 신호의 폭에 의해 결정되고

표 8-1 최소 및 최대 노출 시간 설정 값

8.5 Rolling Shutter

VC-101MC/151MC 카메라는 전자 Rolling Shutter가 장착된 센서를 사용합니다. 카메라는 한 줄의 픽셀에 대해 노출과 readout 과정을 진행하고, tRow(temporal offset) 간격으로 다음 줄의 픽셀에 대해 노출과 readout 과정을 진행합니다. 카메라에 트리거 신호를 공급하면 첫 번째 줄의 픽셀을 리셋한 다음 노출을 진행합니다. tRow 시간이 지나면 두 번째 줄의 픽셀을 리셋한 다음 노출 과정을 진행합니다. 이러한 방식으로 마지막 줄(Line N)의 픽셀까지 노출 과정을 진행합니다. 각 줄의 픽셀 값은 해당 줄의 노출 과정이 완료되면 readout 과정을 진행합니다. 각 줄의 readout 시간은 tRow 값과 동일합니다.

그림 8-7 Rolling Shutter Operation

Camera Link Tap Geometry	tRow
2 Tap	12.91 µs
4 Tap	12.91 µs
8 Tap	12.91 µs
10 Tap	12.91 µs

VC-101MC 카메라의 Camera Link Tap Geometry에 따른 tRow 값은 다음과 같습니다.

표 8-2 VC-101MC 카메라의 Camera Link Tap Geometry별 Temporal Offset Values

VC-151MC 카메라의 Camera Link Tap Geometry에 따른 tRow 값은 다음과 같습니다.

Camera Link Tap Geometry	tRow
2 Tap	15.0 µs
4 Tap	15.0 µs
8 Tap	15.0 µs
10 Tap	15.0 μs

표 8-3 VC-151MC 카메라의 Camera Link Tap Geometry별 Temporal Offset Values

8.6 Exposure와 Readout Overlap

카메라의 영상 획득 과정에는 두 가지 다른 과정이 포함됩니다. 첫 번째 과정은 이미지 센서의 픽셀을 노출하는 과정입니다. 노출 과정을 완료하면 센서에서 픽셀 값을 readout하는 두 번째 과정을 진행합니다. 이러한 영상 획득 과정과 관련해서 VC-101MC/151MC 카메라는 Overlapped와 Non-overlapped 두 가지 작동 모드로 운용할 수 있습니다.

8.6.1 Trigger Mode = Off일 때 Overlapped Acquisition

Trigger Mode 파라미터를 Off로('stm 0')로 설정(Free-run 모드)하면 노출 과정과 readout 과정의 중첩(overlap)을 허용하는 'overlapped' 모드로 작동합니다. 이전 영상에 대한 센서 데이터를 readout하는 동안 새로운 영상에 대한 노출을 시작합니다.

그림 8-8 Overlapped Exposure and Readout

카메라의 노출과 readout 과정의 overlap 여부는 명령 또는 설정과 관계없으며, 카메라의 작동 방법에 따라 overlap 여부가 결정됩니다. "Frame Period"를 영상 N의 첫 번째 줄에 대한 노출 시작 지점부터 영상 N+1의 첫 번째 줄에 대한 노출 시작 지점까지의 구간으로 정의할 경우 다음과 같습니다.

- Non-overlap: Frame Period > Exposure Time + Readout Time
- Overlap: Frame Period ≤ Exposure Time + Readout Time

8.6.2 Trigger Mode = On일 때 Overlapped Acquisition

Overlapped

Trigger Mode 파라미터를 On('stm 1')으로 설정하면 기본적으로 각 영상의 노출 및 readout 전체 과정을 완료한 후 다음 영상의 획득을 시작합니다. 하지만 VC-101MC/151MC 카메라는 다음의 조건을 만족하는 경우 'overlapped' 모드로 작동합니다. 이 경우 카메라의 최대 frame rate로 영상을 획득할 수 있습니다.

1	`	Maximum Allowed Exposure Time	Т	Total Baadaut Tima
Highest Possible Frame Rate	2	for Overlapped Operation	т	

예를 들어, VC-101MC 카메라의 Camera Link Tap Geometry를 4 Tap으로 설정하고 최대 frame rate인 3.2fps로 영상을 획득하려면, 다음과 같이 노출 시간을 199,640 µs 이하로 설정해야 합니다.

Maximum Allowed Exposure Time for Overlapped Operation $\leq \frac{1}{3.2 \text{ fps}} - (8742 \times 12.91 \ \mu\text{s}) = 199,640 \ \mu\text{s}$

Trigger Mode 파라미터를 On으로 설정하고 최대 frame rate로 영상을 획득하려면, 카메라의 노출 시간을 'overlapped' 모드로 운용하기 위한 최대 노출 시간 이하로 설정해야 합니다. VC-101MC 카메라를 'overlapped' 모드로 운용하기 위한 최대 노출 시간은 다음과 같습니다.

Camera Link Tap Geometry	Highest Possible Frame Rate	Max. Exposure Time
2 Tap	1.6 fps	512,140 μs
4 Tap	3.2 fps	199,640 μs
8 Tap	6.5 fps	40,986 µs
10 Tap	8.1 fps	10, 597 μs

표 8-4 Max. Allowed Exposure Time for Overlapped Operation of VC-101MC

VC-151MC 카메라를 'overlapped' 모드로 운용하기 위한 최대 노출 시간은 다음과 같습니다.

Camera Link Tap Geometry	Highest Possible Frame Rate	Max. Exposure Time
2 Tap	1.1 fps	749,490 μs
4 Tap	2.2 fps	294,945 μs
8 Tap	4.4 fps	67,672 µs
10 Tap	5.5 fps	22,218 µs

표 8-5 Max. Allowed Exposure Time for Overlapped Operation of VC-151MC

Non-overlapped

Trigger Mode 파라미터를 On('stm 1')으로 설정하고, 앞의 절에서 설명하는 'overlapped' 모드로 운용하기 위한 최대 노출 시간보다 긴 노출 시간을 사용하는 경우에는 영상 N의 노출 및 readout 전체 과정을 완료한 후 영상 N+1의 획득을 시작합니다. 새로운 영상에 대한 노출 과정은 이전 영상의 센서 readout 과정과 겹치지(overlap) 않습니다. 아래 그림은 Trigger Mode는 On('stm 1'), Trigger Source 파라미터는 LineO('sts 22'), Exposure Mode 파라미터는 Trigger Width('sem 1 또는 ses 1')로 설정한 경우를 나타냅니다.

그림 8-9 Non-overlapped Exposure and Readout

8.7 허용 가능한 최대 Frame Rate

일반적으로 카메라에서 허용 가능한 최대 frame rate는 다음과 같은 여러 요소에 의해 제한됩니다.

- 카메라에서 획득한 영상을 사용자 컴퓨터로 전송하는 시간. 전송 시간은 카메라에 할당된 대역폭에 의해 결정됩니다.
- 영상 센서에서 데이터를 readout한 다음 카메라의 프레임 버퍼로 전송하는 시간. 이 시간은 영상의 Height 설정 값에 의해 결정됩니다. 영상의 높이가 작으면 센서에서 readout하는 시간이 더 적게 걸립니다. 영상의 높이 설정은 'sih n' 명령어로 설정할 수 있습니다.
- Camera Link Tap Geometry. 더 많은 Tap을 사용하는 Camera Link Tap Geometry로 설정하면 더 적은 Tap을 사용하는 Camera Link Tap Geometry로 설정했을 때보다 더 빠른 속도로 영상을 획득할 수 있습니다.
- 영상에 대한 노출 시간. 매우 긴 노출 시간을 사용하면 초당 획득할 수 있는 영상 수가 줄어듭니다.

8.7.1 허용 가능한 최대 Frame Rate 증가하기

카메라의 현재 설정에서 허용 가능한 최대 frame rate보다 더 빠른 속도로 영상을 얻으려면 최대 frame rate에 영향을 미치는 다음의 요소를 하나 이상 조절하고 속도가 증가했는지 확인합니다.

- 카메라에서 영상을 전송하는 시간은 frame rate를 제한하는 중요한 요소입니다. ROI 기능을 사용하여 영상 전송 시간을 줄일 수 있습니다(이로 인해 최대 frame rate는 증가됩니다).
- 영상의 크기를 줄이면 허용 가능한 최대 frame rate를 증가할 수 있습니다. 가능한 경우 Image ROI의 Height 설정 값을 줄입니다.
- Camera Link Pixel Clock 속도를 낮은 값으로 설정한 경우에는 높은 값으로 설정합니다. 설정하기 전에 사용하는 Frame Grabber가 높은 Pixel Clock 속도를 지원하는지 확인하십시오.
- 적은 Tap을 사용하는 Camera Link Tap Geometry를 사용하는 경우 더 많은 Tap을 사용하는 Camera Link Tap Geometry로 변경합니다. 이 경우 일반적으로 최대 frame rate는 증가합니다.
- 정상적인 노출 시간으로 최대 해상도의 영상을 획득하도록 카메라를 설정했다면 노출 시간은 frame rate를 제한하지 않습니다. 하지만, 긴 노출 시간을 사용하는 경우에는 노출 시간이 최대 frame rate 를 제한할 수 있습니다. 긴 노출 시간을 사용하는 경우 노출 시간을 짧게 설정하고 최대 frame rate가 증가하는지 확인합니다. 이 경우 짧은 노출 시간으로 인해 밝은 광원을 사용하거나 렌즈 조리개를 열어서 더 많은 빛을 받아들일 수 있도록 설정해야 할 수도 있습니다.

Note:

ĺ

매우 긴 노출 시간을 사용하면 허용 가능한 최대 frame rate를 상당히 제한하게 됩니다. 예를 들어, 노출 시간을 1초로 설정하면 영상 한 장을 획득하는 데 최소 1초를 소요하기 때문에 카메라는 최대 1초에 한 장의 영상만 획득할 수 있습니다.

9장. Camera Features

9.1 Image Region of Interest

Image ROI(Region of Interest) 기능을 통해 사용자는 영상의 전체 영역 중 필요로 하는 데이터를 포함한 국소 영역을 지정할 수 있습니다. 사용자는 전체 영역에서 일부 영역만을 필요로 할 때 그 영역을 ROI로 지정함으로써 전체 영역을 획득할 때와 동일한 품질의 영상을 보다 빠른 속도로 얻을 수 있습니다. 이때, Height 파라미터를 작게 설정하면 허용 가능한 최대 frame rate가 증가하지만, Width 파라미터는 frame rate에 영향을 미치지 않습니다. ROI는 아래 그림과 같이 센서 열(array)의 왼쪽 상단 끝을 원점으로 참조하여 설정됩니다.

Image ROI 설정 관련 명령어는 다음과 같습니다.

Command		Value	Description
ROI Width	siw	-	Image ROI의 폭 설정
ROI Height	sih	-	Image ROI의 높이 설정
ROI Offset X	SOX	-	Image ROI와 원점과의 수평 Offset 설정
ROI Offset Y	soy	-	Image ROI와 원점과의 수직 Offset 설정

 \pm 9-1 Commands related to Image ROI

사용자는 Width와 Height 파라미터를 설정하여 ROI 크기를 변경할 수 있습니다. 그리고 Offset X와 Offset Y 파라미터를 설정하여 ROI의 원점 위치를 변경할 수 있습니다. 카메라의 Width와 Height는 기본적으로 최대값으로 설정되어 있으므로 사용자는 ROI 크기를 먼저 설정한 후 Offset 값을 설정해야 합니다.

• VC-101MC/151MC 카메라의 경우 Width 파라미터는 16의 배수로 설정해야 하고, Height 파라미터는 2의 배수로 설정해야 합니다.

VC-101MC/151MC 카메라에서 설정 가능한 최소 ROI Offset X, Offset Y, Width 및 Height는 다음과 같습니다.

Camera Model	Minimum Offset X	Minimum Width	Minimum Offset Y	Minimum Height
VC-101MC VC-151MC	16	64	2	2

표 9-2 Minimum ROI Offset X, Offset Y, Width and Height Settings

i) Note:

Acquisition Start 명령('ast')을 실행한 후 카메라의 Image ROI 설정을 변경하면 비정상적인 영상을 획득할 수 있습니다. Acquisition Stop 명령('asp')을 실행한 후 Image ROI 설정을 변경하십시오.

VC-101MC 카메라에서 Vertical ROI의 변화에 따른 최대 프레임 속도는 아래 표와 같습니다.

ROI Size (H \times V)	2 Тар	4 Тар	8 Тар	10 Tap
11648 × 2	127 fps	255 fps	509 fps	635 fps
11648 × 2000	6.9 fps	13.7fps	27.4 fps	34.3 fps
11648 × 4000	3.5 fps	7.0 fps	14.1 fps	17.6 fps
11648 × 6000	2.3 fps	4.7 fps	9.4 fps	11.8 fps
11648 × 8000	1.7 fps	3.5 fps	7.1 fps	8.9 fps
11648 × 8742	1.6 fps	3.2 fps	6.5 fps	8.1 fps

표 9-3 VC-101MC Vertical ROI 크기에 따른 최대 프레임 속도(@ Pixel Clock 85배z)

VC-151MC 카메라에서 Vertical ROI의 변화에 따른 최대 프레임 속도는 아래 표와 같습니다.

ROI Size (H \times V)	2 Тар	4 Тар	8 Тар	10 Tap
14192 × 2	98 fps	195 fps	390 fps	488 fps
14192 × 2000	5.6 fps	11.2 fps	22.4 fps	28.0 fps
14192 × 4000	2.9 fps	5.8 fps	11.5 fps	14.4 fps
14192 × 6000	1.9 fps	3.9 fps	7.7 fps	9.7 fps
14192 × 8000	1.4 fps	2.9 fps	5.8 fps	7.3 fps
14192 × 10640	1.1 fps	2.2 fps	4.4 fps	5.5 fps

표 9-4 VC-151MC Vertical ROI 크기에 따른 최대 프레임 속도(@ Pixel Clock 85Mb)

Caution!

ROI 모드를 사용할 경우 Frame Grabber의 사양에 따라 적용 가능한 ROI 값(H × V)이 달라질 수 있습니다. 자세한 내용은 Frame Grabber 사용 설명서를 참조하십시오.

9.2 Binning (Monochrome Only)

Binning은 인접한 픽셀의 값을 더해서 하나의 픽셀로 내보냄으로써 레벨 값은 증가시키고, 해상도는 감소시키는 효과를 갖습니다. Binning 기능 관련 명령어는 다음과 같습니다.

Command		Value	Description					
Binning Selector sbns		0: Sensor	Binning 엔진을 Sensor로 선택.Binning을 센서에 의해 아날로그로 적용합니다.					
		1: Logic	Binning 엔진을 Logic으로 선택.Binning을 로직에 의해 디지털로 적용합니다.					
Binning Horizontal Mode	sbhm	0: Sum	Binning Selector 설정에 따라서 다음과 같이 작동합니다. • Sensor: N/A					
			• Logic: Binning Horizontal 실정 값만큼 인접한 픽셀의 값을 더해서 하나의 픽셀 값으로 내보냅니다.					
		1: Average	Binning Selector 설정에 따라서 다음과 같이 작동합니다. • Sensor: Binning Vertical Mode에 따라서 자동으로 변경					
			 Logic: Binning Horizontal 설정 값만큼 인접한 픽셀의 값을 더한 다음, 더한 수로 나눠서 하나의 픽셀 값으로 내보냅니다. 					
Binning Horizontal	sbh	×1, ×2, ×3, ×4	Binning Selector 설정에 따라서 다음과 같이 작동합니다. • Sensor: Binning Vertical에 따라서 자동으로 변경 (×1, ×3)					
			• Logic: 수평 방향으로 더할 픽셀 수(×1, ×2, ×4)					
Binning Vertical Mode	sbvm 0: Sum	Binning Selector 설정에 따라서 다음과 같이 작동합니다. • Sensor: N/A						
								• Logic: Binning Vertical 설정 값만큼 인접한 픽셀의 값을 더해서 하나의 픽셀 값으로 내보냅니다.
			1: Average	Binning Vertical 설정 값만큼 인접한 픽셀의 값을 더한 다음, 더한 픽셀 수로 나눠서 하나의 픽셀 값으로 내보냅니다.				
Binning Vertical	sbv	×1, ×2, ×3, ×4	수직 방향으로 더할 픽셀 수 • Sensor: ×1, ×3 • Logic: ×1, ×2, ×4					

𝖽 9-5 Commands related to Binning

Caution!

î____

• Binning Selector를 Sensor로 선택하면 Average Binning만 사용할 수 있습니다.

- Binning Selector를 Sensor로 선택하면 ×1 및 ×3만 사용할 수 있습니다.
- Binning Selector를 Logic으로 선택하면 ×1, ×2 및 ×4만 사용할 수 있습니다.
- Binning 기능은 Serial Command를 통해서만 사용할 수 있고, Configurator에서는 지원되지 않습니다.

예를 들어, Binning Selector를 Logic으로 선택하고 2 × 2 binning을 설정할 경우 카메라의 해상도가 1/4로 줄어들게 됩니다. Binning Horizontal/Vertical Mode를 Sum으로 설정하면 영상은 가로 및 세로 크기가 1/2로 축소되지만, 밝기가 4배 증가합니다. Binning Horizontal/Vertical Mode를 Average로 설정하면 영상은 가로 및 세로 크기가 1/2로 축소되지만 기본 영상과 밝기 차이는 없습니다.

또한, Sensor 및 Logic 두 가지 Binning 엔진을 동시에 사용할 수도 있습니다. 예를 들어, Binning Selector를 Sensor로 선택하고, Binning Horizontal/Vertical Mode는 Average, Binning Vertical은 ×3으로 선택합니다. 그런 다음, Binning Selector를 Logic으로 선택하고, Binning Horizontal/Vertical Mode는 Average, Binning Horizontal/Vertical은 ×4로 선택합니다. 이 경우 12 × 12 binning을 적용할 수 있습니다.

그림 9-2 2 × 2 Binning

9.3 Pixel Format

'sdb 8/10/12' 명령어를 사용하여 카메라에서 전송하는 영상 데이터의 pixel format(8 bit, 10 bit 또는 12 bit)을 결정할 수 있습니다.

Pixel Format 관련 명령어는 다음과 같습니다.

Command		Value	Description
Pixel Format	Pixel Format sdb	8	Pixel Format을 8 bit로 설정
		10	Pixel Format을 10 bit로 설정
		12	Pixel Format을 12 bit로 설정

 \pm 9-6 Command related to Pixel Format

9.4 Camera Link Tap Geometry

VC-101MC/151MC 카메라는 2 Tap, 4 Tap, 8 Tap 및 10 Tap Camera Link Tap Geometry를 지원합니다. Tap 개수는 Camera Link Pixel Clock의 사이클당 출력되는 픽셀 데이터 수를 나타내며 이에 따라 카메라의 Frame Rate가 달라집니다. Frame 데이터는 아래 그림과 같이 Interleaved 방식으로 출력됩니다.

그림 9-3 Camera Link Tap Geometry

Camera Link Tap Geometry 관련 명령어는 다음과 같습니다.

Command		Value	Description
Camera Link Tap	Camera Link Tap stg	2: 1X2-1Y	Camera Link Tap Geometry를 2 Tap으로 설정
Geometry	4: 1X4-1Y	Camera Link Tap Geometry를 4 Tap으로 설정	
		8: 1X8-1Y	Camera Link Tap Geometry를 8 Tap으로 설정
	10: 1X10-1Y	Camera Link Tap Geometry를 10 Tap으로 설정	

표 9-7 Command related to Camera Link Tap Geometry

9.5 Camera Link Pixel Clock Speed

VC-101MC/151MC 카메라는 Camera Link Pixel Clock 속도를 선택할 수 있는 기능을 제공합니다. Pixel Clock 속도는 카메라에서 사용자 컴퓨터의 Frame Grabber로 Camera Link 인터페이스를 통해 전송되는 픽셀 데이터의 속도를 결정합니다. 카메라를 높은 Pixel Clock 속도로 설정하면 카메라에서 Frame Grabber로 영상 데이터를 전송하는 속도가 빨라집니다. 먼저 사용하는 Frame Grabber에서 지원하는 최대 Pixel Clock 속도를 확인하고, 카메라의 Pixel Clock 속도는 Frame Grabber의 최대 속도를 초과하지 않는 값으로 설정하십시오.

Camera Link Pixel Clock 속도 관련 명령어는 다음과 같습니다.

Command		Value	Description
Camera Link Pixel Clock	SCCS	0:85 MHz	Camera Link Pixel Clock 속도를 85 빠로 설정
Speed		1:65 MHz	Camera Link Pixel Clock 속도를 65 배고 설정

표 9-8 Command related to Camera Link Pixel Clock Speed

9.6 AWB ROI (컬러 카메라)

컬러 카메라에서 제공하는 Auto White Balance 기능은 AWB용 ROI(Region of Interest)의 픽셀 데이터를 사용하여 관련 설정 값을 조절합니다.

AWB용 ROI 설정을 위한 명령어는 다음과 같습니다.

Command		Value	Description
AWB Offset X	SWX	-	ROI 시작 지점의 X 좌표
AWB Offset Y	swy	-	ROI 시작 지점의 Y 좌표
AWB Width	SWW	-	ROI 폭
AWB Height	swh	-	ROI 높이

∄ 9-9 Commands related to AWB ROI

이미지(Image) ROI 및 AWB ROI를 동시에 사용하는 경우에는 설정한 AWB ROI와 이미지 ROI의 중첩되는 영역의 픽셀 데이터만 유효합니다. 유효 영역은 아래 그림과 같이 결정됩니다.

9.7 White Balance (컬러 카메라)

컬러 카메라에서는 영상 센서에서 획득한 영상의 컬러 밸런스를 조정할 수 있는 white balance 기능을 사용할 수 있습니다. VC-101MC/151MC 카메라에서 제공하는 white balance 기능은 Red, Green 및 Blue의 강도(intensity)를 개별적으로 조정할 수 있습니다. 'srg' 명령어를 사용하여 각 색상의 강도를 설정할 수 있습니다. 색상의 강도는 1.0부터 4.0까지 설정 가능합니다. 'srg r/g/b' 명령어를 1.0으로 설정한 경우 해당 색상의 강도는 white balance 메커니즘으로부터 영향을 받지 않습니다. 색상 강도를 1.0보다 큰 값으로 설정하면 해당 색상의 강도는 설정 값에 비례해서 증가합니다. 예를 들어, 'srg b 1.5' 명령어를 실행하면 Blue 색상의 강도는 50% 증가합니다.

White Balance 관련 명령어는 다음과 같습니다.

Command		Value	Description
RGB Gain	srg r	1.0× ~ 4.0×	Red 픽셀의 강도 설정
	srg g	1.0× ~ 4.0×	Green 픽셀의 강도 설정
	srg b	1.0× ~ 4.0×	Blue 픽셀의 강도 설정

 \pm 9-10 Command related to White Balance

9.7.1 Auto White Balance

컬러 카메라에서는 Auto White Balance 기능을 사용할 수 있습니다. GreyWorld 알고리듬에 따라 컬러 카메라에서 획득한 영상의 White Balance를 조절합니다. Auto White Balance 기능을 수행하기 전에 AWB용 ROI를 설정해야 합니다. AWB용 ROI를 설정하지 않으면 Auto White Balance 기능은 Image ROI 내의 픽셀 데이터를 사용하여 White Balance를 조절합니다. 'arg' 명령어를 실행하면 Green을 기준으로 Red 및 Blue의 강도를 상대적인 값으로 조절하여 White Balance를 맞춥니다.

Auto White Balance 관련 명령어는 다음과 같습니다.

Command		Value	Description
Auto White Balance	arg	-	White Balance 조정 1회 수행 후 Off

 \pm 9-11 Command related to Auto White Balance

9.8 Gain 및 Black Level

Gain 명령어('sdg n')를 사용하여 영상의 모든 픽셀 값을 증가할 수 있습니다. 이로 인해 센서에서 출력하는 값보다 높은 Grey 값을 카메라에서 출력할 수 있습니다.

Black Level 명령어('sbl n')를 사용하여 카메라에서 출력하는 픽셀 값에 설정 값만큼 offset을 추가할 수 있습니다.

Gain 및 Black Level 설정 관련 명령어는 다음과 같습니다.

Command		Value	Description	
Gain	sdg	1.0× ~ 32.0×	디지털 gain 값 설정	
Black Level	sbl	0 ~ 255	Black level 값 설정(12 bit 기준)	

표 9-12 Commands related to Gain and Black Level

9.9 Hot Pixel Correction

긴 노출 시간을 사용하여 영상을 획득하거나, 온도가 높은 환경에서 카메라를 사용하면 고해상도 CMOS 센서의 특성으로 인해 출력 영상에 Hot Pixel이 나타날 수 있습니다. VC-101MC/151MC 카메라는 이러한 Hot Pixel을 제거할 수 있는 Hot Pixel Correction 기능을 제공합니다.

Hot Pixel Correction 명령어는 다음과 같습니다.

Command		Value	Description
Hot Pixel Correction sdsnup		0: Off	Hot Pixel Correction 기능 해제
		1: On	Hot Pixel Correction 기능 설정

 \pm 9-13 Command related to Hot Pixel Correction

9.10 Dynamic Defective Pixel Correction

Defective Pixel Correction 기능(9.11 Defective Pixel Correction 참조)을 설정하고 영상을 획득해도 긴 노출 시간, 높은 Gain 설정 또는 높은 운용 온도로 인해 획득한 영상에서 일부 픽셀이 주변보다 상당히 밝거나 어둡게 나타날 수 있습니다. VC-101MC/151MC 카메라는 이러한 Defect Pixel을 제거할 수 있는 Dynamic Defective Pixel Correction 기능을 제공합니다. 'sddc 1' 명령어를 실행하면 주변 픽셀보다 상당히 밝거나 어두운 픽셀을 주변 3 × 3 픽셀의 Median 값으로 대체합니다. Defective Pixel Offset Threshold 명령어('shpo/scpo n')를 사용하여 Median 값으로 대체할 Defect Pixel 값의 범위를 조절할 수 있습니다.

Dynamic Defective Pixel Correction 기능 관련 명령어는 다음과 같습니다.

Command		Value	Description
Dynamic Defective Pixel	sddc	0: FALSE	Dynamic DPC 기능 해제
Correction		1: TRUE	Dynamic DPC 기능 설정
+ Defective Pixel Offset Threshold	shpo	0 ~ 2048 (at 12 bit)	Median 필터의 + Threshold Offset 값을 설정합니다.
- Defective Pixel Offset Threshold	scpo	0 ~ 2048 (at 12 bit)	Median 필터의 - Threshold Offset 값을 설 정합니다

표 9-14 Commands related to Dynamic Defective Pixel Correction

Defect Pixel 값의 범위는 주변 3 × 3 픽셀 평균 ±20% 값과 ±Offset Threshold 값으로 조절할 수 있습니다.

9.11 Defective Pixel Correction

CMOS 센서에는 빛에 정상적으로 반응하지 못하는 Defect Pixel이 존재할 수 있습니다. 이는 출력 영상의 품질을 떨어뜨리므로 보정이 필요합니다. 각 카메라에 사용된 CMOS 센서의 Defect Pixel 정보는 출하 단계에서 카메라에 입력됩니다. 사용자가 Defect Pixel 정보를 추가하려는 경우, 새로운 Defect Pixel의 좌표 값을 카메라에 입력해야 합니다. 자세한 방법은 Appendix A를 참조하십시오.

9.11.1 보정 방법

Defect Pixel의 보정 값은 같은 라인 상에 인접한 유효 픽셀 값을 기반으로 계산됩니다.

L3 L2 L1	R1	R2	R3	
----------	----	----	----	--

Current Pixel

그림 9-6 보정할 Defect Pixel의 위치

위 그림과 같이 값을 보정해야 할 Defect Pixel인 Current Pixel이 있을 때, 이 픽셀의 보정 값은 주위 픽셀이 Defect Pixel인지 아닌지에 따라 아래 표와 같이 구해집니다.

인접 Defect Pixel	Current Pixel의 보정 값
없음	(L1 + R1) / 2
LI	R1
R1	LI
L1, R1	(L2 + R2) / 2
L1, R1, R2	L2
L2, L1, R1	R2
L2, L1, R1, R2	(L3 + R3) / 2
L2, L1, R1, R2, R3	L3
L3, L2, L1, R1, R2	R3

표 9-15 Defect Pixel 보정 값 계산

9.12 Flat Field Correction

Flat Field Correction은 조명과 같은 외부 환경에 의해 영상의 배경이 고르지 않을 때 이를 보정하여 전체적으로 배경 값이 일정한 영상을 얻도록 하는 기능입니다. Flat Field 보정 기능을 간략화하면 아래의 식과 같이 나타낼 수 있습니다.

IC = (IR × M) / IF IC: 보정된 영상의 레벨 값 IR: 원본 영상의 레벨 값 M: 보정 후 영상의 목표 값 IF: Flat Field 데이터의 레벨 값

Flat Field Correction 관련 명령어는 다음과 같습니다.

Command		Value	Description
Set Flat Field Correction	sfc	0: Off	Flat Field Correction 기능 해제
		1: On	Flat Field Correction 기능 설정
Flat Field Data Selector	sfds	0~15	Flat Field 데이터를 저장 또는 불러올 영역을 설정 합니다. 0~15: 사용자 설정 영역
Generate Flat Field Data	gfd	none / 0	보정 후 영상의 목표 값을 자동으로 설정하고 Flat Field 데이터 생성
		1 ~ 4095	보정 후 영상의 목표 값을 직접 설정하고 Flat Field 데이터 생성(12-bit 기준 설정 값)
Save Flat Field Data	sfd	-	생성한 Flat Field 보정 데이터를 비휘발성 메모리에 저장합니다.
			Generate Flat Field Data로 생성한 데이터는 휘발성 메모리에 저장되기 때문에 카메라의 전원을 껐다 켠 후 해당 데이터를 다시 사용하려면 비휘발성 메모리에 저장해야 합니다.
Load Flat Field Data	lfd	-	비휘발성 메모리에 저장되어 있는 Flat Field 데이터를 휘발성 메모리로 불러옵니다.

 \pm 9-16 Commands related to Flat Field Correction

9.12.1 Flat Field 보정 순서

실제 사용 조건에서 다음 절차에 따라서 Flat Field 보정 데이터를 생성한 후 카메라의 비휘발성 메모리에 저장합니다.

Configurator를 이용하여 보정하는 방법

- FFC 탭을 선택한 후 FFC Data / Selector의 Generate 버튼을 클릭합니다. Generate 버튼을 클릭한 후 한 장의 영상을 획득하면 축소된 Flat Field 보정 데이터를 생성합니다.
- 2. FFC Data / Selector의 Selector 드롭다운 목록을 사용하여 생성한 Flat Field 보정 데이터를 저장할 위치를 선택합니다.
- Flash Memory 범주에서 Save to Flash 버튼을 클릭하여 생성한 Flat Field 보정 데이터를 비휘발성 메모리에 저장합니다. 축소된 Flat Field 보정 데이터는 보정에 사용될 때, 그림 9-9과 같이 Bilinear Interpolation으로 확대된 후 적용됩니다.

생성한 Flat Field 보정 데이터를 무시하고 이전 Flat Field 보정 데이터를 사용하려면, Save to Flash 버튼을 클릭하기 전에 Load from Flash 버튼을 클릭합니다.

4. VIEW 탭의 Flat Field Corr. 선택 상자를 선택하면 Flat Field 보정 데이터를 카메라에 적용합니다.

🦁 Vieworks - VC-101MC-C8H0	- • ×
<u>File</u> <u>Start-Up</u> <u>T</u> ool Acquisition	<u>A</u> bout
VIEW MODE/EXP ANALOG FFC	FAN Digital VO AWB
FFC Data / Selector	Flash Memory
Generate	Load from Flash
Selector: Selector0 -	Save to Flash
FFC Data Download / Upload	
Download to camera	Upload to PC
Sequencer	Count
On Off	
Configuration On Off	▼ 1 ▼
	3

그림 9-7 Flat Field Correction in Configurator

Serial Command를 이용하여 보정하는 방법

- 1. 'gfd' 명령어를 실행합니다.
 - 보정 후 영상의 목표 값(Flat Field Target Level)을 직접 설정하려면 'gfd n' 명령어를 실 행합니다.

• 'gfd' 명령어를 실행한 후 한 장의 영상을 획득하면 축소된 Flat Field 보정 데이터를 생성 합니다.

- 2. 'sfds 0/1/…/15' 명령어를 사용하여 생성한 Flat Field 보정 데이터를 저장할 위치를 선택합니다.
- *3.* 'sfd' 명령어를 실행하여 생성한 Flat Field 보정 데이터를 비휘발성 메모리에 저장합니다. 축 소된 Flat Field 보정 데이터는 보정에 사용될 때, 그림 9-9과 같이 Bilinear Interpolation으 로 확대된 후 적용됩니다.
 - 생성한 Flat Field 보정 데이터를 무시하고 이전 Flat Field 보정 데이터를 사용하려면, 'sfd' 명령어를 사용하기 전에 'lfd' 명령어를 실행합니다.
- 4. 'sfc 1' 명령어를 실행하면 Flat Field 보정 데이터를 카메라에 적용합니다.

Caution!

- Flat Field 데이터를 생성하기 전에 Defective Pixel Correction 기능('sdc 1')을 먼저 설정하는 것이 좋습니다.
- 'gfd' 명령어를 실행하기 전에 다음과 같이 카메라를 설정해야 합니다. OffsetX, Y: 0 Width, Height: 최대값
- 한 장의 영상을 획득할 수 있도록 Acquisition Start 명령어('ast')를 실행한 후 카메라를 free-run으로 작동하거나, 트리거 신호를 카메라에 공급해야 합니다.
- Flat Field Target Level을 직접 설정하려면 Serial Command를 사용하십시오. Configurator에서는 사용자 설정 Flat Field Target Level을 설정할 수 없습니다.

Magnified Image Boundary

그림 9-9 Bilinear Interpolated Magnification

9.12.2 Flat Field Data Selector

앞에서 설명한 바와 같이 생성한 Flat Field 보정 데이터는 카메라의 휘발성 메모리에 저장되어 있고, 이 데이터는 카메라의 전원을 껐다 켜면 손실됩니다. 카메라의 전원을 껐다 켠 후에도 생성한 Flat Field 보정 데이터를 사용하려면 카메라의 비휘발성 메모리에 저장해야 합니다. VC-101MC/151MC 카메라는 Flat Field 보정 데이터를 저장하거나 불러올 수 있는 16개의 비휘발성 메모리 영역을 제공합니다. Flat Field Data Selector 명령어('sfds 0/1/…/15')를 사용하여 원하는 영역을 선택할 수 있습니다.

그림 9-10 Flat Field Data Selector

Flat Field 데이터 저장하기

카메라의 활성 Flat Field 데이터 영역과 Flat Field 데이터를 저장할 수 있는 비휘발성 메모리 영역은 일대일로 대응합니다. 따라서, 생성한 Flat Field 데이터를 카메라 Flash 메모리의 지정된 영역에 저장하려면, Flat Field 데이터를 생성하기 전에 Flat Field Data Selector 명령어를 사용하여 메모리 영역을 선택해야 합니다.

- 'sfds 0/1/…/15' 명령어를 사용하여 Flat Field 데이터 영역을 선택하고, Flat Field 데이터를 생성합니다.
- 2. 'sfd' 명령어를 사용하거나, Configurator에서 Save to Flash 버튼을 클릭하여 생성한 Flat Field 보정 데이터를 지정한 영역에 저장합니다.

Flat Field 보정 데이터 불러오기

Flat Field 보정 데이터를 카메라의 비휘발성 메모리에 저장한 경우 카메라의 활성 Flat Field 보정 데이터 영역으로 불러올 수 있습니다.

- 'sfds 0/1/…/15' 명령어를 사용하여 원하는 Flat Field 보정 데이터가 저장된 영역을 지정하면, 카메라에서 Flat Field Correction 기능을 적용할 때 해당 Flat Field 보정 데이터를 사용합니다.
- 새로 생성한 Flat Field 보정 데이터를 무시하고 이전 Flat Field 보정 데이터를 불러오려면, 'Ifd' 명령어를 실행합니다.

9.13 Digital I/O Control

카메라의 컨트롤 입/출력 단자는 다양한 모드로 사용할 수 있습니다.

Digital I/O Control 관련 명령어는 다음과 같습니다.

Command		Value	Description
Line Inverter	slni	0: FALSE	Line 출력 신호 반전되지 않음
		1: TRUE	Line 출력 신호 반전
Line Source	sInc	0: Off	Line 출력 해제
		4: Frame Active	한 프레임의 readout 구간을 펄스로 출력
		6: Exposure Active	현재 노출 시간을 펄스로 출력
		10: User Output0	User Output Value 설정 값에 의해 펄스 출력
		18: Timer0 Active	사용자 설정 Timer 출력 신호를 펄스로 출력
		30: Strobe	Strobe 신호(마지막 줄의 노출을 시작하면 상승하고 첫 번째 줄의 노출이 종료되면 하강)를 펄스로 출력
User Output	SUOV	0: FALSE	Bit를 Low로 설정
Value		1: TRUE	Bit를 High로 설정

표 9-17 Commands related to Digital I/O Control

Line Source를 User Output0으로 설정하면 사용자 설정 값을 출력 신호로 사용할 수 있습니다.

그림 9-11 User Output

카메라는 Exposure Active 출력 신호를 제공합니다. Exposure Active 신호는 다음 그림과 같이 노출 시간이 시작되면 상승하고 노출 시간이 종료되면 하강합니다. 이 신호는 플래시의 트리거로 사용할 수도 있고, 특히 카메라 또는 촬영 대상이 움직이는 환경에서 매우 유용합니다. 일반적으로 카메라는 노출 과정을 진행하는 동안 움직이면 안 됩니다. Exposure Active 신호를 관찰하여 노출이 언제 진행되는지, 카메라가 언제 움직이면 안 되는지 확인할 수 있습니다.

Strobe

Line Source를 Strobe('slnc 30')로 설정하면 카메라는 Strobe 신호를 내보낼 수 있습니다. 일반적으로 Strobe 신호는 노출 시간이 시작되면 상승하고 노출 시간이 종료되면 하강합니다. 이 신호는 플래시의 트리거로 사용할 수도 있고, 특히 카메라 또는 촬영 대상이 움직이는 환경에서 매우 유용합니다. 일반적으로 카메라는 노출 과정을 진행하는 동안 움직이면 안 됩니다. Strobe 신호를 관찰하여 노출이 언제 진행되는지, 카메라가 언제 움직이면 안 되는지 확인할 수 있습니다.

VC-101MC/151MC 카메라는 아래 그림과 같은 Strobe 신호를 제공합니다. Strobe 신호는 마지막 줄의 노출을 시작하면 상승하고 첫 번째 줄의 노출이 종료되면 하강합니다. Strobe 신호는 노출 시간을 readout 시간보다 길게 설정한 경우에만 사용할 수 있고, Flash 조명을 사용하는 환경에서 매우 유용합니다.

Debounce

VC-101MC/151MC 카메라의 Debounce 기능을 사용하면 유효한 입력 신호와 무효한 입력 신호를 구분하여 유효한 입력 신호만 카메라에 공급할 수 있습니다. Debounce Time을 설정하여 유효한 입력 신호로 판단할 입력 신호의 최소 High 또는 Low 유지 시간을 지정할 수 있습니다. 이때, 유효한 입력 신호가 카메라에 공급된 시점과 적용된 시점 사이에는 Debounce Time만큼의 지연 시간이 발생합니다.

Debounce Time을 설정하면 아래 그림에서와 같이 설정 값보다 작은 High 및 Low 신호는 무효한 신호로 판단하여 무시됩니다.

그림 9-14 Debounce

Debounce Time 관련 명령어는 다음과 같습니다.

Command	Value	Description
Debounce Time sdbt	0-1,000,000 µs	마이크로세컨드 단위로 Debounce 시간 설정

 \pm 9-18 Command related to Debounce Time

9.14 Timer Control

Line Source를 TimerOActive로 설정하면 카메라는 Timer를 사용하여 출력 신호를 내보낼 수 있습니다. VC-101MC/151MC 카메라는 Frame Active, Exposure Active 이벤트, Strobe 또는 외부 트리거 신호를 Timer의 소스 신호로 사용할 수 있습니다.

Timer	관련	명령어는	다음과	같습니다.
-------	----	------	-----	-------

Command		Value	Description
Timer Duration	stdu	1 ~ 60,000,000 µs	Timer Trigger Activation을 Falling/Rising Edge로 설정한 경우 Timer 출력 신호의 주기를 지정
Timer Delay	stdl	0~60,000,000 µs	Timer 출력 신호를 출력하기 전에 적용할 지연 시간 지정
Timer Reset	-	-	Timer를 초기화하고 다시 시작
Timer Trigger	stts	0: Off	Timer 출력 신호 해제
Source		4: Frame Active	한 프레임의 readout 구간을 Timer 출력 신호의 소스 신호로 사용
		6: Exposure Active	현재 노출 시간을 Timer 출력 신호의 소스 신호로 사용
		22: Line0	외부 트리거 신호를 Timer 출력 신호의 소스 신호로 사용
		30: Strobe	Strobe 신호를 Timer 출력 신호의 소스 신호로 사용
Timer Trigger Activation	stta	0: Falling Edge	선택한 트리거 신호의 하강 에지를 Timer 출력 신호 트리거로 작동하도록 지정
		1: Rising Edge	선택한 트리거 신호의 상승 에지를 Timer 출력 신호 트리거로 작동하도록 지정
		2: Level Low	선택한 트리거 신호가 Low 구간일 때 Timer 출력 신호가 유효하도록 지정

표 9-19 Command Parameters related to Timer Control

예를 들어, Timer Trigger Source를 Exposure Active로 설정하고, Timer Trigger Activation을 Level High로 설정한 경우에는 다음과 같이 Timer가 작동합니다.

- 1. Timer Trigger Source 명령어로 설정한 소스 신호가 공급되면 Timer는 작동을 시작합니다.
- 2. Timer Delay 명령어로 설정한 지연 시간이 시작된 후 만료됩니다.
- 3. 지연 시간이 만료되면 소스 신호의 High 구간만큼 Timer 신호가 상승합니다.

* Timer Trigger Activation is set to Level High.

그림 9-15 Timer Signal

9.15 Fan Control

카메라의 후면에는 팬이 장착되어 열을 방출합니다. 팬의 작동 여부를 설정할 수 있고, 온도 설정에 따라서 팬이 작동하도록 설정할 수도 있습니다. Fan 관련 명령어는 다음과 같습니다.

Command		Value	Description
Fan Operation Mode	sfm	0: Off	Fan 작동 해제
		1: On	Fan 작동 설정
		2: Temperature	Target Temperature에 설정한 온도 이상에 도 달하면 Fan 작동
Target Temperature	stt	-10°C ~80°C	Fan Operation Mode를 Temperature로 설정 한 경우 Fan 작동 온도

9.16 Temperature Monitor

카메라에는 내부 온도를 모니터하기 위한 센서 칩이 내장되어 있어서 실시간으로 온도를 확인할 수 있습니다. 카메라 내부 온도 관련 명령어는 다음과 같습니다.

Command		Value	Description
Device Temperature	gct	-	섭씨 단위로 온도 표시

 \pm 9-21 Command related to Device Temperature

9.17 Status LED

카메라 후면에는 카메라의 작동 상태를 알려주기 위한 LED가 있습니다. LED의 상태와 그에 해당하는 카메라 상태는 다음과 같습니다.

Status LED	Description
Steady Red	카메라 초기화 안 됨
Fast Flashing Green	영상 데이터 전송 중임

표 9-22 Status LED

9.18 Test Image

카메라의 정상적인 작동 여부를 확인하기 위해 영상 센서로부터 나오는 영상 데이터 대신 내부에서 생성한 테스트 이미지를 출력하도록 설정할 수 있습니다. 테스트 이미지는 모두 세 가지가 있으며, 각각 가로 방향으로 값이 다른 이미지(Test Image 1), 대각 방향으로 값이 다른 이미지(Test Image 2), 그리고 대각 방향으로 값이 다르고 움직이는 이미지(Test Image 3)입니다. 테스트 이미지 관련 명령어는 다음과 같습니다.

Command		Value	Description
Test Image	sti	0: Off	Test Image 기능 해제
		1: Test Image 1	Grey Horizontal Ramp로 설정
		2: Test Image 2	Grey Diagonal Ramp로 설정
		3: Test Image 3	Grey Diagonal Ramp Moving으로 설정
		16: Sensor Specific	센서에서 제공하는 Test Image로 설정

 \pm 9-23 Commands related to Test Image

그림 9-17 Test Image 2

그림 9-18 Test Image 3

Ŵ

Caution!

카메라의 해상도에 따라서 출력되는 Test Image의 영역이 달라지므로 영상이 다르게 보일 수 있습니다.

9.19 Reverse X

영상의 가운데 중심 축을 기준으로 영상의 좌우를 뒤집는 기능입니다. 이 기능은 카메라의 모든 작동 모드에서 적용 가능합니다. Reverse X 관련 명령어는 다음과 같습니다.

Command		Value	Description
Reverse X	shf	0: FALSE	Reverse X 기능 해제
		1: TRUE	영상의 좌우 뒤집기

표 9-24 Command related to Reverse X

그림 9-19 원본 영상

그림 9-20 Reverse X 영상

9.20 Device Reset

카메라를 물리적으로 Reset하여 전원을 껐다 켭니다. Device Reset 관련 명령어는 다음과 같습니다.

Command		Value	Description	
Device Reset	rst	-	물리적 Reset 수행	

 \pm 9-25 Command related to Device Reset

9.21 Field Upgrade

카메라는 필드에서 카메라를 분해하지 않고 Camera Link 인터페이스를 통해 Firmware와 FPGA 로직을 업그레이드하는 기능을 제공합니다. 자세한 변경 방법은 Appendix B를 참조하십시오.

10장.Camera Configuration

10.1 설정 명령

카메라의 모든 설정은 Camera Link의 RS-644 시리얼 인터페이스를 통해 이루어집니다. 터미널을 이용하거나 사용자 애플리케이션에서 직접 제어하고자 할 경우 다음과 같은 통신 설정으로 제어할 수 있습니다.

- Baud Rate: 115200 bps
- Data Bit: 8 bit
- Parity Bit: No parity
- Stop Bit: 1 stop bit
- Flow Control: None

대량의 데이터 전송을 필요로 하는 명령 중 Firmware Download 이외의 모든 카메라 설정 명령은 ASCII 명령 형태로 전달됩니다. 모든 카메라 설정 명령은 사용자 애플리케이션으로부터 시작하고 카메라는 명령에 대한 응답('OK', 'Error' 또는 정보)을 반환합니다. 쓰기 명령의 경우 카메라는 응답을 통해 명령 수행 완료 여부를 알려주고, 읽기 명령의 경우에는 에러 응답 또는 정보를 반환합니다.

```
명령어 포맷:
<명령어> <파라미터1> <파라미터2> <cr>
명령어 뒤에는 0~2개의 파라미터가 뒤따릅니다.
응답:
쓰기 명령 수행이 정상적으로 완료된 경우
OK <cr> <1f>
```

쓰기 명령 예)

```
In response to a "set 100" command the camera will return (in hex value)

Command : 73 65 74 20 31 30 30 0D

set 100<cr>
Response : 73 65 74 20 31 30 30 0D 0A 4F 4B 0D 0A 3E

set 100<cr>100<cr>cr>cr>cr>cr>cr>cr>cr>cr>cr>cr>cr>cr>cr>cr>cr>cr>cr>cr>cr>cr>cr>cr>cr>cr>cr>cr>cr>cr>cr>cr>cr>cr>cr>cr>cr>cr>cr>cr>cr>cr>cr>cr>cr>cr>cr>cr>cr>cr>cr>cr>cr>cr><licr>cr><licr>cr><licr>cr><licr>cr><licr>cr><licr><licr><licr>cr><licr><licr><licr>cr><licr><licr><licr><licr>cr><licr><licr><licr><licr><licr><licr><licr><licr><licr><licr><licr><licr><licr><licr><licr><licr><licr><licr><licr><licr><licr><licr><licr><licr><licr><licr><licr><licr><licr><licr><licr><licr><licr><licr><licr><licr><licr><licr><licr><licr><licr><licr><licr><licr><licr><licr><licr><licr><licr><licr><licr><licr><licr</li><licr><licr</li><licr</li><licr</li><licr</li><licr</li><licr</li><licr</li><licr</li>cr<licr</li><licr</li>cr<licr</li>cr<licr</li>crcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcrcr<licr</li><licr</li>crcr<licr</li><li
```

읽기 명령 수행이 정상적으로 완료된 경우 <파라미터1> <cr> <lf>

읽기 명령 예)

```
In response to a "get" command the camera will return (in hex value)

Command : 67 65 74 0D

get <cr>
Response : 67 65 74 0D 0A 31 30 30 0D 0A 3E

get<cr><1f> 100<cr><1f> >

Echo response prompt
```

명령 수행이 완료되지 못한 경우 Error: <에러코드> <cr> <1f>

```
Prompt:
응답 메시지 뒤에 항상 프롬프트(`>')가 뒤따릅니다.
에러 코드의 종류
0x80000481: 파라미터의 값이 유효하지 않음
0x80000482: 파라미터의 개수가 일치하지 않음
0x80000484: 존재하지 않는 명령어임
```

10.2 명령어 실제 적용 시간

사용자가 명령어를 실행하면 명령어가 적용되는 실제 시간은 명령어 종류 및 카메라의 작동 상태에 따라서 다릅니다. Set Exposure Time('set') 명령어를 제외한 모든 명령어는 아래 그림에서와 같이 readout을 시작하기 전 REQ_Frame 신호가 상승할 때 적용되어 카메라 설정을 변경합니다. 'set' 명령어를 실행하면 노출을 시작할 때 노출 시간 설정이 변경되어 적용됩니다. Trigger Mode를 On으로 설정하고 카메라를 작동할 경우에는 트리거 신호를 공급하기 전에 명령어를 실행하여 영상 출력과 해당 명령어의 동기화를 유지해야 합니다. 현재 카메라의 작동 상태를 확인하기 어려운 Free-Run 모드에서는 명령어를 실행하더라도 해당 명령어가 적용되지 않은 영상을 최대 2장 획득할 수도 있습니다.

그림 10-1 명령어 실제 적용 시간

10.3 User Set Control

사용자는 카메라 설정을 카메라 내부의 Flash 영역에 저장하거나 다시 불러올 수 있습니다. 저장 영역은 두 개를 지원하고 Load 영역은 세 개를 지원합니다. User Set Control 관련 명령어는 다음과 같습니다.

Command		Value	Description
User Set Load	lcf	0: Default	Factory Default Setting을 카메라에 Load
		1: User 1 Setting	User 1 Setting을 카메라에 Load
		2: User 2 Setting	User 2 Setting을 카메라에 Load
User Set Save	sct	1: User 1 Setting	현재 카메라 설정을 User 1 Setting에 저장
		2: User 2 Setting	현재 카메라 설정을 User 2 Setting에 저장
User Set Default	sci	0: Default	카메라 Reset 시 Factory Default Setting 적용
		1: User 1 Setting	카메라 Reset 시 User 1 Setting 적용
		2: User 2 Setting	카메라 Reset 시 User 2 Setting 적용

표 10-1 Commands related to User Set Control

Default 영역에 저장된 카메라 설정 값은 카메라의 작업 영역으로 불러올 수는 있지만 설정 값을 변경할 수는 없습니다. 카메라의 전원을 껐다 켜거나 카메라를 reset하면 카메라의 작업 영역에서 설정한 값은 없어집니다. 작업 영역의 현재 설정 값을 reset한 후에도 사용하려면 설정 값을 사용자 영역 중 하나에 저장해야 합니다.

그림 10-2 User Set Control

10.4 Sequencer Control

VC-101MC/151MC 카메라에서 제공하는 Sequencer Control을 통해 'Sequencer Set'라고 하는 서로 다른 파라미터 설정 값을 연속된 영상 획득에 적용할 수 있습니다. 영상을 획득할 때, 하나의 Sequencer Set를 적용한 다음 다른 Sequencer Set를 적용합니다. 이를 통해 영상을 획득하는 동안 변하는 영상 획득 조건에 빠르게 대응할 수 있습니다. 예를 들면, 조명이 바뀌면 영상 획득 조건이 변경됩니다.

User Set Control 기능을 사용하여 설정한 Sequencer Set를 카메라의 비휘발성 메모리에 저장할 수 있습니다. 그러면 카메라를 껐다 켜거나 reset한 후에 User Set Default 설정 값에 따라서 Sequencer Set를 사용할 수 있습니다. 각 Sequencer Set는 0부터 31까지의 색인 번호로 확인할 수 있고, 최대 32개의 다른 Sequencer Set를 지정할 수 있습니다.

VC-101MC/151MC 카메라에서는 Flat Field 보정 데이터만 Sequencer Set에 적용할 수 있습니다.

Command		Value	Description		
Sequencer Mode	ssqm	0 Sequencer 해제			
		1	Sequencer 설정		
Sequencer	ssqcm	0	Sequencer 설정 Sequencer 구성 모드 해제 Sequencer 구성 모드 설정 설정할 Sequencer Set 선택		
Configuration Mode		1	Sequencer 구성 모드 설정		
Sequencer Set Selector	ssqss	0~31	설정할 Sequencer Set 선택		
Sequencer Set Active	qsqsa	-	현재 작동하는 Sequencer Set의 색인 번호 표시 (0~31)		
Sequencer Set Count	ssqsc	1 ~ 32	적용할 Sequencer Set의 개수		
Reset Sequencer	rsq	-	Sequencer Set 0 단계로 복귀		

Sequencer Control 관련 명령어는 다음과 같습니다.

⊞ 10-2 Commands related to Sequencer Control

Caution!

Sequencer Set를 적용하려면 Trigger Mode를 On('stm 1')으로 설정해야 합니다.

Use Case - Flat Field 보정 데이터 4개를 Sequencer Set로 적용

예를 들어, LCD 패널을 검사하기 위해 White, Green, Red 및 Blue 픽셀에 최적화된 4개의 Flat Field 보정 데이터를 다음과 같이 서로 다른 Sequencer Set로 적용할 수 있습니다.

- 1. Sequencer Mode를 해제합니다('ssqm 0').
- 2. Sequencer Configuration Mode를 설정합니다('ssqcm 1').
- Sequencer Set Selector 파라미터를 0('ssqss 0')으로 설정하고, Flat Field Data Selector 파라미터를 0('sfds 0')으로 설정합니다. 그런 다음, Sequencer Set Selector 파라미터를 1, 2, 3으로 선택하고, Flat Field Data Selector 파라미터를 1, 2, 3으로 각각 설정합니다.
- 4. Sequencer Set Count 파라미터를 4('ssqsc 4')로 설정합니다.
- 5. Sequencer Configuration Mode를 해제('ssqcm 0')한 다음 Sequencer Mode를 설정합니다 ('ssqm 1').

Note:

i

- 설정한 Sequencer Set를 저장하려면 User Set Control 기능을 사용하여 카메라의 비휘발성 메모리에 저장하십시오.
- 자세한 내용은 10.3 User Set Control을 참조하십시오.
- Sequencer를 수행하는 동안 언제라도 Sequencer Reset 명령어('rsq')를 실행하면 Sequencer Set 0 단계로 돌아갑니다.

10.5 Command List

VC-101MC/151MC 카메라에서 제공하는 기능은 다음 명령어로 설정할 수 있습니다.

Command	Syntax	Return Value	Description
Help	help	String	모든 명령어 표시
Set ROI Offset X Get ROI Offset X	sox n gox	OK n	ROI 시작 지점의 X 좌표 n: X axis offset
Set ROI Offset Y Get ROI Offset Y	soy n goy	OK n	ROI 시작 지점의 Y 좌표 n: Y axis offset
Set Image Width Get Image Width	siw n giw	OK n	ROI 폭 설정 n: Width 값
Set Image Height Get Image Height	sih n gih	OK n	ROI 높이 설정 n:Height 값
Set Binning Selector Get Binning Selector	sbns 0 1 gbns	OK 0 1	Binning 엔진 선택 0: Sensor 1: Logic
Set Binning Horizontal Mode Get Binning Horizontal Mode	sbhm 0 1 gbhm	OK 0 1	Binning Horizontal에 적용할 Binning 모드 설정 0: Sum 1: Average
Set Binning Horizontal Get Binning Horizontal	sbh 1 2 3 4 gbh	OK 1 2 3 4	수평 방향으로 더할 픽셀 수 1 2 3 4: ×1, ×2, ×3, ×4
Set Binning Vertical Mode Get Binning Vertical Mode	sbvm 0 1 gbvm	OK 0 1	Binning Vertical에 적용할 Binning 모드 설정 0: Sum 1: Average
Set Binning Vertical Get Binning Vertical	sbv 1 2 3 4 gbv	OK 1 2 3 4	수직 방향으로 더할 픽셀 수 1 2 3 4: ×1, ×2, ×3, ×4
Acquisition Start	ast	OK	영상 획득 시작
Acquisition Stop	asp	OK	영상 획득 종료

표 10-3 Command List #1

Command	Syntax	Return Value	Description
Set Test Image Get Test Image	sti 0 1 2 3 16 gti	OK 0 1 2 3 16	Test Image 설정 0: Test Image 기능 해제 1: Grey Horizontal Ramp로 설정 2: Grey Diagonal Ramp로 설정 3: Grey Diagonal Ramp Moving으로 설정 16: 센서에서 제공하는 Test Image로 설정
Set Camera Link Tap Geometry Get Camera Link Tap Geometry	stg 2 4 8 10 gtg	OK 2 4 8 10	Camera Link Tap Geometry 설정 2:1X2-1Y (2 Tap) 4: 1X4-1Y (4 Tap) 8: 1X8-1Y (8 Tap) 10: 1X10-1Y (10 Tap)
Set Data Bit Get Data Bit	sdb 8 10 12 gdb	OK 8 10 12	Pixel Format 설정 8: 8 bit 10: 10 bit 12: 12 bit
Set Camera Link Clock Selector Get Camera Link Clock Selector	sccs 0 1 gccs	ОК 0 1	Camera Link Pixel Clock Speed 설정 0:85 배고 1:65 배고
Set Defect Correction Get Defect Correction	sdc 0 1 gdc	OK 0 1	Defect Pixel Correction 기능 설정 0: Defect Pixel Correction 기능 해제 1: Defect Pixel Correction 기능 활성화
Set Horizontal Flip Get Horizontal Flip	shf 0 1 ghf	ОК 0 1	Reverse X (Horizontal Flip) 기능 설정 0: Reverse X 기능 해제 1: Reverse X 기능 활성화

표 10-4 Command List #2

Command	Syntax	Return Value	Description
Set Trigger Mode Get Trigger Mode	stm 0 1 gtm	OK 0 1	Trigger Mode 설정 0: Trigger Mode Off (Free run 모드) 1: Trigger Mode On
Set Exposure Mode Get Exposure Mode	sem/ses 0 1 gem/ges	OK 0 1	Exposure 모드 설정 0: Timed 1: Trigger Width
Set Trigger Source Get Trigger Source	sts 3 10 14 18 22 gts	OK 3 10 14 18 22	Trigger Mode를 On으로 설정 한 경우 소스 신호 지정 3: Software 10: User Output0 14: CC1 18: Timer0 Active 22: Line0
Generate SW Trigger	gst	ОК	Software 트리거 신호 생성
Set Trigger Activation Get Trigger Activation	sta 0 1 gta	OK 0 1	Trigger Mode를 On으로 설정한 경우 소스 신호의 Activation 모드 설정 0: Falling Edge 1: Rising Edge
Set Exposure Time Get Exposure Time	set n get	OK n	노출 시간 설정 n: 마이크로세컨드 단위의 노출 시간 (Setting range: 1 - 60,000,000 µs)
Set Frame Rate Get Frame Rate	sfr n gfr	OK n	Trigger Mode를 Off로 설정한 경우 Exposure Start 트리거를 생성하는 비율 설정
Set Black Level Get Black Level	sbl n gbl	OK n	Black Level 설정 n: Black Level 값(Setting range: 0~255)
Set Digital Gain Get Digital Gain	sdg n gdg	OK n	디지털 Gain 값 설정 n: Gain 값 (Setting range: 1× ~ 32×)

표 10-5 Command List #3

Command	Syntax	Return Value	Description
Generate Flat Field Data	gfd none 0 n	OK	Flat Field Generator 실행 none / 0: 보정 후 영상의 목표 값을 자동 설정 n: 보정 후 영상의 목표 값을 직접 설정(1 ~ 4095 @ 12 bit)
Set Flat Field Data Selector Get Flat Field Data Selector	sfds 0 1 2 … 15 gfds	OK 0 1 2 … 15	Flat Field 보정 데이터 영역 선택 0~15: 사용자 설정 영역
Save Flat Field Data	sfd	OK	생성한 Flat Field 보정 데이터 를 선택한 Flat Field 보정 데이터 영역에 저장
Load Flat Field Data	lfd	OK	비휘발성 메모리에 저장된 Flat Field 보정 데이터를 휘발성 메모리로 불러옴
Set Flat Field Correction Get Flat Field Correction	sfc 0 1 gfc	OK 0 1	Flat Field Correction 기능 설정 0: Flat Field Correction 기능 해제 1: Flat Field Correction 기능 활성화
Set Point DSNU Correction Get Point DSNU Correction	sdsnup 0 1 gdsnup	OK 0 1	Hot Pixel Correction 기능 설정 0: Hot Pixel Correction 기능 해제 1: Hot Pixel Correction 기능 설정
Set Fan Mode Get Fan Mode	sfm 0 1 2 gfm	OK 0 1 2	Fan 작동 모드 설정 0: Fan Off 1: Fan On 2: Temperature
Set Target Temperature Get Target Temperature	stt n gtt	OK n	Fan 작동 모드를 Temperature 로 설정한 경우 Fan 작동 온도 설정 n:-10℃~80℃

표 10-6 Command List #4

Command	Syntax	Return Value	Description
Set Line Source Get Line Source	slnc 0 4 6 10 18 30 glnc	OK 0 4 6 10 18 30	입/출력 단자 소스 신호 설정 0: Line 입/출력 해제 4: Frame Active 6: Exposure Active 10: User Output0 18: Timer0 Active 30: Strobe
Set Line Inverter Get Line Inverter	slni 0 1 glni	OK 0 1	Line 출력 신호 반전 여부 설정 0:Line 출력 반전 해제 1:Line 출력 반전
Set User Output Value Get User Output Value	suov 0 1 guov	ОК 0 1	사용자 설정 값 설정 O: Bit를 Low로 설정 1:Bit를 High로 설정
Set Timer Trigger Source Get Timer Trigger Source	stts 0 4 6 22 30 gtts	OK 0 4 6 22 30	Timer 출력 신호의 소스 신호 설정 0: Timer 출력 신호 해제 4: Frame Active 6: Exposure Active 22: Line0 30: Strobe
Set Timer Duration Get Timer Duration	stdu n gtdu	OK n	Timer 출력 신호의 주기 설정 n: 1 – 60,000,000 μs
Set Timer Delay Get Timer Delay	stdl n gtdl	OK n	Timer 출력 신호의 지연 시간 설정 n:0-60,000,000 μs
Set Timer Trigger Activation Get Timer Trigger Activation	stta 0 1 2 3 gtta	OK 0 1 2 3	Timer 출력 신호의 Activation 모드 설정 0: Falling Edge 1: Rising Edge 2: Level Low 3: Level High
Set Debounce Time Get Debounce Time	sdbt n gdbt	OK n	Debounce 시간 설정 n: 마이크로세컨드 단위 의 Debounce 시간 (0-1,000,000 µs)

표 10-7 Command List #5

Command	Syntax	Return Value	Description
Set Sequencer Mode Get Sequencer Mode	ssqm 0 1 gsqm	OK 0 1	Sequencer 모드 설정 0: Sequencer Mode 해제 1: Sequencer Mode 활성화
Set Sequencer Configuration Mode Get Sequencer Configuration Mode	ssqcm 0 1 gsqcm	OK 0 1	Sequencer 구성 모드 설정 0:Sequencer 구성 모드 해제 1:Sequencer 구성 모드 활성화
Set Sequencer Set Selector Get Sequencer Set Selector	ssqss n gsqss	OK n	설정할 Sequencer Set 선택 n: Sequencer Set 색인 번호 (0 ~ 31)
Set Sequencer Set Count Get Sequencer Set Count	ssqsc n gsqsc	OK n	적용할 Sequencer Set의 개수 설정 n: 1 ~ 32
Get Sequencer Set Active	<u>a</u> sdza	n	현재 작동하는 Sequencer Set의 색인 번호 표시(0~31)
Reset Sequencer	rsq	OK	Sequencer Set 0 단계로 복귀
Set AWB Offset X Get AWB Offset X	swx n gwx	OK n	AWB용 ROI와 원점과의 수평 Offset 설정
Set AWB Offset Y Get AWB Offset Y	swy n gwy	OK n	AWB용 ROI와 원점과의 수직 Offset 설정
Set AWB Width Get AWB Width	sww n gww	OK n	AWB용 ROI의 폭 설정
Set AWB Height Get AWB Height	swh n gwh	OK n	AWB용 ROI의 높이 설정
Set RGB Gain Get RGB Gain	srg r g b g grg r g b	OK g	컬러 픽셀의 강도 설정 r g b:Red/Green/Blue 픽셀 g:Gain 값 (1.0× ~4.0×)
Auto White Balance	arg	OK	Auto White Balance 한 번 실행

표 10-8 Command List #6

Command	Syntax	Return Value	Description
Set Dynamic DPC Get Dynamic DPC	sddc 0 1 gddc	OK 0 1	Dynamic DPC 기능 설정 0: Dynamic DPC 기능 해제 1: Dynamic DPC 기능 설정
Set + Defective Pixel Offset Threshold Get + Defective Pixel Offset Threshold	shpo n ghpo	OK n	Median 필터의 + Threshold Offset 값 설정(0 ~ 2048 at 12 bit)
Set - Defective Pixel Offset Threshold Get - Defective Pixel Offset Threshold	scpo n gcpo	OK n	Median 필터의 - Threshold Offset 값 설정(0~2048 at 12 bit)
Load Config. From	lcf 0 1 2	OK	카메라 설정 값 불러오기 0: Factory Default Setting을 카메라에 Load 1: User 1 Setting을 카메라에 Load 2: User 2 Setting을 카메라에 Load
Save Config. To	sct 1 2	ОК	카메라 설정 값 저장 1: User 1 Setting에 저장 2: User 2 Setting에 저장
Set Config. Initialization Get Config. Initialization	sci 0 1 2 gci	OK 0 1 2	카메라 Reset 시 적용할 설정 값 지정 0: Factory Default Setting 1: User 1 Setting 2: User 2 Setting
Get Model Name	gmn	String	카메라 모델 이름 표시
Get MCU Version	gmv	String	카메라 MCU 버전 표시
Get FPGA Version	gfv	String	카메라 FPGA 버전 표시
Get Serial Number	gsn piece	String	카메라 시리얼 번호 표시
Get Current Temperature	gct	String	카메라 내부 온도를 섭씨 단위로 표시
Get Fan RPM	gfrpm	String	Fan RPM 표시
Reset Hardware	rst	-	카메라 Reset 실행

표 10-9 Command List #7

11장.Configurator GUI

Configurator는 VC-101MC/151MC 카메라를 컨트롤하기 위해 함께 제공되는 샘플 애플리케이션입니다. Configurator는 앞장에서 설명한 명령어를 사용하고, 사용자가 보다 쉽게 카메라를 제어할 수 있도록 GUI(Graphic User Interface)를 제공합니다.

11.1 Camera Scan

카메라의 전원을 켠 상태에서 프로그램을 실행하면 아래 그림과 같이 Camera Scan 창이 표시됩니다. 이때 프로그램은 컴퓨터의 시리얼 포트와 Camera Link가 제공하는 DLL을 체크하여 카메라 연결 여부를 스캔하고 연결된 카메라가 있으면 모델명을 화면에 표시합니다. 화면에 표시된 모델명을 더블 클릭하면 Configurator가 실행되면서 연결된 카메라의 현재 설정 값을 표시합니다.

Camera Scan 🛛 🛛 🛛 🔊				
VIEWOFKS Imaging Expert				
PORT	CAMERA			
COM2	VC-101MC-C8H0			
СОМЗ	Not found			
COM5	Not found			
SCAN	InterfaceType :			
PORT	All 🔻			
SELECT PORT	ЕХП			

그림 11-1 Configurator Loading Window

11.2 메뉴

Configurator의 메뉴 모음에서는 File, Start-Up, Tool, Acquisition 및 About 메뉴를 제공합니다.

11.2.1 File

그림 11-2 File 메뉴

Load Setting:	카메라의 설정 값을 불러옵니다. 사용자 컴퓨터의 파일 또는 카메라 내부의
	설정 값 저장 영역(Factory, User1, User2)으로부터 불러올 수 있습니다.
Save Setting:	카메라의 설정 값을 저장합니다. 사용자 컴퓨터의 파일 또는 카메라 내부의
	설정 값 저장 영역(User1, User2)에 저장할 수 있습니다.
Defect Pixel:	Defect 정보를 카메라에 다운로드(Download to Camera)하거나, 카메라에
	저장된 Defect 정보를 사용자 컴퓨터로 업로드(Upload to PC)합니다.
System Upgrade:	MCU 또는 FPGA 로직을 업그레이드합니다. Acquisition Start 명령('ast')을
	실행하면 System Upgrade 메뉴는 비활성화됩니다. System Upgrade 메뉴를
	활성화하려면 Acquisition Stop 명령('asp')을 실행하십시오.
Exit:	프로그램을 종료합니다.

11.2.2 Start-Up

카메라의 전원이 켜질 때 설정 값을 불러올 영역을 선택하는 메뉴입니다.

Vieworks - VC-101MC-C8H0	- • •
File Start-Up Tool Acquisition	About
VIEW Factory Setting	FAN Digital VO AWB
✓ User 1 Setting	
User 2 Setting	
Offset X:	0 Width: 11648
Offset Y:	
Test Image 11	648 (H) × 8742 (V)
None Height:	
Test #1 8742	
© Test #2	
🔘 Test #3	
CameraLink Output Pixel Format	Image Processing
1X4-1Y • 12bit	▼ Flat Field Corr.
	Defect Corr.
CameraLink Clock FPS 3.28	7733 Reverse X Dynamic Defective Pixel Correction
	DPC Offset Threshold
	128.000000
+	→ 40.8 °C [] V2.4.3.0

그림 11-3 Start-Up 메뉴

 Factory Setting:
 카메라의 전원이 켜질 때 Factory 영역으로부터 설정 값을 불러옵니다.

 User 1 Setting:
 카메라의 전원이 켜질 때 User1 영역으로부터 설정 값을 불러옵니다.

 User 2 Setting:
 카메라의 전원이 켜질 때 User2 영역으로부터 설정 값을 불러옵니다.

11.2.3 Tool

🥑 Vieworks - VC-101MC-C8H0 📃 🖃 🔜 🗠			
File Start-Up	Tool Acq	uisition About	t
VIEW MODE/E)	Refre	sh	tal VO AWB
	Termi Color Facto High	nal Calibration ry Setting Speed	Width: 11648
Test Image None Test #1 Test #2 Test #3	Height:	11648 (F	i) × 8742 (V)
CameraLink Out	put Pix	el Format	Image Processing
174-17	- 1	bit 👻	Flat Field Corr.
			Defect Corr.
CameraLink Cloo	k FP	S 3.287733	Reverse X Dynamic Defective Pixel Correction
			DPC Offset Threshold
			128.000000
		\leftarrow	40.8 ℃ 🚺 V2.4.3.0

그림 11-4 Tool 메뉴

Refresh:카메라의 현재 설정 값을 다시 읽어서 Configurator에 표시합니다.Terminal:GUI 상의 사용자 명령을 터미널에 표시합니다. 클릭하면 프로그램 하단에
Terminal 창이 표시되고, 다시 클릭하면 Terminal 창이 사라집니다.Color Calibration:지원되지 않는 기능입니다.Factory Setting:일반 사용자에게는 지원되지 않습니다.High Speed:지원되지 않는 기능입니다.

11.2.4 Acquisition

Acquisition Start 및 Acquisition Stop 명령을 실행할 수 있는 메뉴를 제공합니다.

Vieworks - VC-101MC-C8H0	- • 🗙
File Start-Up Tool Acquisition About	
VIEW MODE/EXP AN Start	Digital VO AWB
Stop	
Offset X: 0	Width: 11648
Offset Y:	
Test Image 11648 (H)	× 8742 (V)
None Height:	
Test #1	
© Test #2	
Test #3	
CameraLink Output Pixel Format	Image Processing
174-17 -	Flat Field Corr.
	Defect Corr.
CameraLink Clock	Reverse X
85MHz •	Pixel Correction
	DPC Offset Threshold
	128.000000
>> ghpo 128.000000 (19 ms) 😝 2	7.3 ℃ 🚺 V2.4.3.0

그림 11-5 Acquisition 메뉴

Start:Acquisition Start 명령을 실행합니다.Stop:Acquisition Stop 명령을 실행합니다.

11.2.5 About

Vieworks - VC-101MC-C8H0	
File Start-Up Tool Acquisition About	
VIEW MODE/EXP ANALOG FFC Ca	mera Info
Offset X: 0 Offset X: 0 Offset Y: 0 Interview of the set of the se	Width: 11648 × 8742 (V) Image Processing Flat Field Corr. Defect Corr. Reverse X Dynamic Defective Pixel Correction DPC Offset Threshold 128.000000
40	0.8 ℃ 🚺 V2.4.3.0

그림 11-6 About 메뉴

Camera Info: 카메라 정보(제품명, 시리얼 넘버, 버전 등)를 표시합니다.

11.3 탭

11.3.1 VIEW 탭

카메라의 ROI, 테스트 이미지 모드, Camera Link Tap Geometry, Camera Link Pixel Clock Speed, Pixel Format, 이미지 처리 등의 기능을 제어하는 탭입니다.

그림 11-7 VIEW Tab

Offset X, Offset Y, Width Height:	카메라의 Image ROI를 설정합니다.
Test Image:	테스트 이미지 적용 여부와 종류를 선택합니다.
Camera Link Output:	Camera Link Tap Geometry를 설정합니다.
Camera Link Clock:	Camera Link Pixel Clock Speed를 선택합니다.
Pixel Format:	데이터 출력 폭을 설정합니다.
FPS:	카메라의 현재 frame rate를 표시합니다.
Image Processing:	Flat Field Correction, Defect Pixel Correction, Reverse $X,$
	Dynamic DPC 기능의 On/Off를 설정합니다.
DPC Offset Threshold:	Median 필터의 Threshold Offset 값을 설정합니다.
11.3.2 MODE/EXP 탭

Trigger 모드 및 노출 시간 설정을 위한 탭입니다.

💟 Vi	ework	s - VC-1	LO1MC-C8	HO				×
<u>F</u> ile	<u>S</u> tart	-Up <u>T</u> o	ol A <u>c</u> qu	isition	<u>A</u> bout			
VIEW	MO	DE/EXP	ANALOG	FFC	FAN	Digital V	O AWB	
⊂ ⊓	rigger l	Mode						
	⊚ off							
	🔿 On							
	\geq	Exposu	ire	Source		Activ	vation	
		() Time	ed	Line) –] 01	Falling Edge	
		🔘 Trig	ger Width			0	Rising Edge	
E	xposur	e Time						
-							10000	us
			0uc 10m	a 220a	. 494	600		
-	us 2	cous ou	Jous 10m	s 2200	15 4.05	6 00S		
							-	
				- + ·	- 4	10.8 ℃	V2.4.3	8.0

- 그림 11-8 MODE/EXP Tab
- Trigger Mode:Trigger Mode를 설정합니다.Trigger Mode를 On으로 설정하면 관련 옵션이 활성화됩니다.Exposure:Exposure Mode를 선택합니다.Source:트리거 신호 역할을 할 소스 신호를 지정합니다.Activation:트리거 신호의 극성을 선택합니다.Exposure Time:Trigger Mode를 Off로 설정하거나 Exposure를 Timed로 설정한 경우
노출 시간을 설정합니다.

11.3.3 ANALOG 탭

영상의 Gain 및 Black Level 설정을 위한 탭입니다.

그림 11-9 ANALOG Tab

Gain:영상의 Gain 값을 설정합니다.Black Level:영상의 Black Level 값을 설정합니다.

11.3.4 FFC 탭

Flat Field Correction 설정을 위한 탭입니다.

🦁 Vieworks - VC-101N	1C-C8H0								
<u>F</u> ile <u>S</u> tart-Up <u>T</u> ool	Acquisition	<u>A</u> bout							
VIEW MODE/EXP ANA	LOG FFC	FAN	Digital I/O AWB						
FFC Data / Selector		Fla	ash Memory						
Generate	;		Load from Flash						
Selector: Selecto	r0 🔻		Save to Flash						
FFC Data Download / Up	FFC Data Download / Upload								
Downloa	d to camera		Upload to PC						
Sequencer	Index		Count						
Configuration On Of	f	•							
			[]						

그림 11-10 FFC Tab

Generate:	보정에 사용할 Flat Field 보정 데이터를 생성합니다.				
Selector:	Flat Field 보정 데이터를 저장 또는 불러올 영역을 선택합니다.				
Flash Memory:	생성한 Flat Field 보정 데이터를 이후에도 다시 사용하기 위해				
	Flash에 저장하거나(Save to Flash), 저장되어 있는 Flat Field				
	보정 데이터를 불러옵니다(Load from Flash).				
FFC Data Download / Upload:	사용자 컴퓨터에서 카메라로 Flat Field 보정 데이터를 다운로드				
	하거나 (Download to camera), 카메라에 저장된 Flat Field 보정				
	데이터를 사용자 컴퓨터로 업로드합니다(Upload to PC).				
Sequencer:	Sequencer 기능을 설정합니다. Sequencer 구성 모드를				
	설정하거나, 설정할 Sequencer Set를 선택하거나, 적용할				
	Sequencer Set 개수를 설정합니다.				

11.3.5 Digital I/O 탭

VC-101MC/151MC 카메라의 출력 단자를 다양한 모드로 사용할 수 있습니다. Digital I/O 탭에서 카메라의 출력 단자 모드를 설정합니다.

🦁 Vieworks - VC-101MC-C8	HO	- • •
<u>File Start-Up Tool Acqui</u>	isition <u>A</u> bout	
VIEW MODE/EXP ANALOG	FFC FAN	Digital VO AWB
Lineout Source	Line Inverter FALSE TRUE	User Output FALSE TRUE
Timer Trigger Source	Debounce	
Off 👻	0.50	
	(0.02us ~ 1000	000us)
Timer Duration	ms 220ms 4.8	a lus As 60s
Timer Delay	ms 220ms 4.8	, , O us 3s 60s
Timer Trigger Activation		
	→ 4	40.8 ℃ 🚺 V2.4.3.0

그림 11-11 Digital I/O Tab

Lineout Source:	Line 출력 신호의 소스 신호를 지정합니다.
Line Inverter:	Line 출력 신호의 반전 여부를 설정합니다.
User Output:	사용자 출력 값을 설정합니다.
Timer Trigger Source:	Timer 출력 신호의 소스 신호를 지정합니다.
Debounce:	Debounce 시간을 설정합니다.
Timer Duration:	Timer 출력 신호의 주기를 설정합니다.
Timer Delay:	Timer 출력 신호를 출력하기 전에 적용할 지연 시간을 설정합니다.
Timer Trigger Activation:	Timer 출력 신호의 활성화 모드를 설정합니다.

11.3.6 FAN 탭

FAN 탭에서는 팬의 작동 여부 및 운용 온도를 설정할 수 있습니다.

🥑 Vie	works - V	/C-101	MC-C8HC)					×
<u>F</u> ile	<u>S</u> tart-Up	<u>T</u> ool	A <u>c</u> quisit	ion	<u>A</u> bout	_			
VIEW	MODE/E	XP AN	IALOG FI	FC	FAN	Digital	VO A	WB	
F	an Operat Off Off Temper Operation	ion Mod Ious ature Temper	e ature:						
	Ç	æ)						
						40.0.05	(()		0
				- +		40.8 °C	1C	V2.4.3	.0

그림 11-12 FAN Tab

Fan Operation Mode:팬의 작동 여부를 설정합니다.Operation Temperature:Temperature를 선택한 경우 Fan의 작동 온도를 설정합니다.

11.3.7 AWB 탭 (Color Camera Only)

VC-101MC/151MC 컬러 카메라에서는 Auto White Balance 기능을 사용할 수 있습니다. AWB 탭에서 AWB용 ROI를 설정하거나 White Balance를 설정할 수 있습니다.

🦁 Vieworks - VC-1	01MC-C8H0							
<u>File</u> <u>Start-Up</u> <u>T</u> o	ol A <u>c</u> quisition <u>A</u> bout							
VIEW MODE/EXP	ANALOG FFC FAN Digita	al VO AWB						
ROI Selection	ROI Selection							
OffsetX: 0								
OffsetY: 0	11648 (H) × 87	742 (V)						
Width: 11648								
Height: 8742								
Bayer Gain Red Gain Green Gain Blue Gain 1.00000 1.00000 1.00000								
Color	Reset Auto White Balanc	e						
	→ 40.8 °C	C 🚺 V2.4.3.0						

그림 11-13 AWB Tab (Color Camera Only)

Offset X, Offset Y, Width, Height:	Auto White Balance를 적용할 ROI를 설정합니다.
Bayer Gain:	Red,Green 및 Blue 픽셀에 적용할 Gain 값을 설정합니다.
Color Reset:	Red, Green 및 Blue 픽셀에 적용한 Gain 값을 초기화합니다.
Auto White Balance:	White Balance 조정을 1회 자동으로 수행합니다.

12장.제품 동작 이상 확인 및 조치

제품이 이상 작동을 하면 아래 사항을 점검해 주시기 바랍니다.

- 화면에 아무것도 보이지 않을 경우
 - 케이블 연결이 제대로 되었는지 확인하십시오.
 - 전원 공급이 제대로 이루어지는지 확인하십시오.
 - 외부 트리거 입력 모드일 경우, 트리거가 제대로 입력되는지 확인하십시오.
- 화면이 선명하지 않을 경우
 - 렌즈나 Glass에 먼지가 묻어 있는지 확인하십시오.
 - 렌즈의 초점이 잘 맞는지 확인하십시오.
- 영상이 어둡게 나올 경우
 - 렌즈가 막혀 있는지 확인하십시오.
 - 노출 시간이 적절한 지 확인하십시오.
 - 조리개가 닫혀 있는지 확인하십시오.
 - Gain 값이 너무 작게 설정되어 있는지 확인하십시오.
- 카메라 동작이 이상하고 뜨거울 경우
 - 전원 연결이 제대로 되었는지 확인하십시오.
 - 카메라에서 연기가 나거나 비정상적인 발열 시 사용을 중지하십시오.
- 트리거 모드가 제대로 동작되지 않을 경우
 - Software 트리거 입력 설정이 제대로 되었는지 확인하십시오.
 - CC1 트리거 모드의 경우 Frame Grabber의 CC1 설정이 제대로 되었는지 확인하십시오.
 - 외부 트리거 모드의 경우 케이블 연결이 제대로 되었는지 확인하십시오.
- 통신이 되지 않을 때
 - Camera Link 케이블 연결이 제대로 되었는지 확인하십시오.
 - 컴퓨터에 장착된 Camera Link Frame Grabber에 카메라가 제대로 연결되어 있는지, 설정이 제대로 되었 는지 확인하십시오.

품질보증서

제품명				보증기간
모델명				
구입일자	년	월	일	
보증기간	년	월	일	

고객주소:	성명	
	연락처	
판매처:	성명	
	연락처	

사후 봉사를 받으실 때

사용 설명서를 한 번 더 확인하시고 고장이라 판단되면 고장 상태와 제품 정보를 명확히 기록하여 알려주십시오.

고장의 상태나 내용에 따라 유상과 무상으로 구분되며 아래의 고장 원인은 유상으로 처리됩니다.

- 사용자 취급 부주의에 의한 고장
- 정격 전원 이외의 전원 연결 시
- 사용자 임의로 분해 및 수리한 경우
- 재해에 의한 고장(화재, 침수, 낙뢰 등)

고장내용 기록

Appendix A. Defective Pixel Map Download

 엑셀에서 아래 왼쪽 그림처럼 Defective Pixel Map 데이터를 작성하고 CSV 파일(*.csv)로 저장합니다. 오른쪽 그림은 작성한 파일을 메모장에서 열었을 때의 모습입니다. 작성 시 적 용되는 규칙은 다음과 같습니다.

':' 또는 '—'로 시작하는 라인은 주석으로 처리됩니다. 각 행은 수평 좌표 값, 수직 좌표 값순으로 작성합니다. 픽셀의 입력 순서는 무관합니다.

- Vieworks VC-101MC-C8H0 - - -File Start-Up Tool Acquisition About FC FAN Digital VO AWB Load Setting Save Setting ۲ Defect Pixel Download to Camera ۶ System Upgrade ۲ Upload to PC Exit 11648 (H) × 8742 (V) Test Image None Height: 🔘 Test #1 8742 Test #2 Test #3 CameraLink Output Pixel Format Image Processing Flat Field Corr. 1X4-1Y 🔻 12bit 👻 Defect Corr. Reverse X CameraLink Clock Dynamic Defective Pixel Correction FPS 3.287733 85MHz 👻 DPC Offset Threshold 128.000000 40.8 ℃ [] V2.4.3.0
- 2. Configurator에서 File > Defect Pixel > Download to Camera를 선택합니다.

3. 작성한 파일을 선택하고 열기 버튼을 클릭합니다.

😳 Open				-X
Look <u>i</u> n:	鷆 Upgrade	•	G 🌶 📂 🛄 -	
Recent Places Desktop Libraries	Name		Date modified 7/30/2013 10:21 AM	Type Microsoft
Computer Computer Network	 ✓	III defect		Open Cancel

4. 카메라로 Defective Pixel Map 데이터의 전송이 진행되고 하단에 진행 상황이 표시됩니다.

🤍 Vieworks - VC-101MC-C8H0 🛛 🗖 🖾								
File Start-Up T	ool Acqu	isition	About					
VIEW MODE/EXP	ANALOG	FFC	FAN	Digital VO AWB				
Offset X: 0 Width: 11648 Offset Y: 0 11648 (H) × 8742 (V) 11648 (H) × 8742 (V) 11648 (H) × 8742 (V) 11648 (H) × 8742 (V)								
1X4-1Y	121	it	•	 Flat Field Corr. Defect Corr. 				
CameraLink Clock	FPS	3.28	7733	Reverse X Dynamic Defective Pixel Correction				
				DPC Offset Threshold 128.000000				
			-	Cancel V2.4.3.0				

- 5. 다운로드가 완료되면 저장 과정이 진행됩니다. 저장 과정이 진행되는 동안 전원이 분리되지 않도록 주의하십시오.
- 6. 모든 과정이 완료되면 하단에 Download completed란 메시지가 표시됩니다.

Vieworks - VC-101MC-C8	H0	Alband	
VIEW MODE/EXP ANALOG	FFC	FAN	Digital I/O AWB
Of Offset Y: 0 Test Image	fset X:	0 548 (H)	Width: 11648
None Height: Test #1 Test #2 Test #3			
CameraLink Output Pixel 1X4-1Y CameraLink Clock FPS 85MHz	Format it 3.28	7733	Image Processing Flat Field Corr. Defect Corr. Reverse X Dynamic Defective Pixel Correction DPC Offset Threshold
Download completed			128.000000

Appendix B. Field Upgrade

다음 절차에 따라서 카메라의 MCU, FPGA 및 XML 파일을 업그레이드할 수 있습니다. Acquisition Start 명령('ast') 명령을 실행하면 System Upgrade 메뉴는 비활성화됩니다. System Upgrade 메뉴를 활성화하려면 Acquisition Stop('asp') 명령을 실행하십시오.

1. Configurator에서 File > System Upgrade > Package Upgrade를 선택합니다.

2. 제공된 MCU 또는 FPGA 업그레이드 파일을 선택한 다음 열기 버튼을 클릭합니다.

Open					? 🗙
Look jn:	🗀 Upgrade		•	← 🗈 💣 📰•	
My Recent Documents Ocsktop	mcu, srec				
My Documents					
My Computer					
My Network Places	File <u>n</u> ame: Files of <u>type</u> :	mcu,srec File(*,srec)		•	<u>O</u> pen Cancel

카메라로 업그레이드 파일의 다운로드가 진행되고 하단에 진행 상황이 표시됩니다.
 이 과정은 수 분 정도의 시간이 소요됩니다. 이때 업그레이드를 취소하려면 Cancel 버튼
 을 클릭합니다.

VIEW MODE/EXP ANALOG FFC FAN	
VIEW MODE/EXP ANALOG FFC FAN	
	Digital VO AWB
Offset X: 0 Offset Y: 0 I 1648 (H) None Test Image None Test #1 Test #2 Test #3 CameraLink Output IX4-1Y CameraLink Clock FPS 3.287733	Width: 11648 × 8742 (V) Image Processing Flat Field Corr. Defect Corr. Reverse X Dynamic Defective Pixel Correction DPC Offset Threshold 128.00000
	Cancel V2.4.3.0

4. 다운로드가 완료되면 저장 과정이 진행됩니다. 저장 과정이 진행되는 동안 전원이 공급되지 않으면 카메라를 복구할 수 없으므로 전원 케이블이 분리되지 않도록 주의하십시오.

Vieworks - VC-1 File Start-Up To	101MC-C8 pol Acqu	H0 isition	About	
VIEW MODE/EXP	ANALOG	FFC	FAN	Digital I/O AWB
Of Test Image None Test #1 Test #2 Test #3	Of fset Y: 0 eight: 8742	ffset X:	0	Width: 11648
CameraLink Outpu	FPS	Format iit 3.28	77733	Image Processing Flat Field Corr. Defect Corr. Reverse X Dynamic Defective Pixel Correction DPC Offset Threshold 128.000000
Download complete	ed		➡ 4	40.8 ℃ 🚺 V2.4.3.0

Page 121 of 127

5. 모든 과정이 완료되면 전원을 껐다 켠 후 Tool > Terminal을 선택하고 'gmv' 명령을 입력해서 버전을 확인합니다. 또한, About > Camera Info를 선택해서 파일 버전을 확인할 수도 있습니다.

Appendix C. Index

4

4핀	커넥터35
6	

A

acquisition	control	 	37
acquisition	control	 	

Acquisition Mode

Continuous 파라미터	3	37
Acquisition Mode 파라미터	.37	
Acquisition Start 명령	.37	
Acquisition Stop 명령	.37	

В

back panel	
block diagram	21

C

Camera Link 커넥터	.30
Configurator 다운로드	.29
Configurator 실행	.29
Continuous 파라미터	.37

D

defect pixel	69
defective pixel 보정	69
diagram	21
dimension	26
direction input	36

Ε

Exposure Offset	
Exposure Time 파라미터	설정50

F

falling edge	42
Flat Field Correction 데이터	70
Flat Field 보정 데이터 생성	70
Free-run	41

Н

Hirose	35
--------	----

Μ

Mating	
Mono 8/10/12	62

R

rising edge42

S

schematic diagram	.36
specification	.20
strobe output	.36
strobe 출력 신호	.36
strobe 출력 회로	.36

Т

:ilt	29
Trigger Activation 파라미터	42
rigger input	36
TriggerWidth 노출 모드	49

V

VIS	6

C


```
메이팅 커넥터......34
```

명령어

Average	60
BinningHorizontal	60
BinningHorizontalMode	60
Average	60
Sum	60
BinningSelector	60
BinningVertical	60
BinningVerticalMode	60
Average	60
Sum	60
BlackLevel	67
Debounce Time	
DefectivePixelOffsetThreshold	
Device Reset	
DeviceControl	
DeviceTemperature	
DeviceTemperatureSelector	
DynamicDefectivePixelCorrection	
ExposureActive	
FallingEdge	
FanOperationMode	

VIEWOLKS

FanSpeed	
Flat Field Data Selector	······
FlatFieldDataSelector	
FrameActive	
Gain	
GenerateElatEieldData	
GreyDiagonaiRampivioving	
GreyHorizontalRamp	
Hot Pixel Correction	
ImageFormatControl	
LevelHigh	
LevelLow	
Line0	
LineInverter	
LineSource	
LoadFlatFieldData	
Mainboard	
PixelFormat	
RoverseX	
RisingEdge	
ROI Offset Y	
ROI Width	
SaveFlatFieldData	
SensorSpecific	
SequencerConfigurationMode	
SequencerControl	!
SequencerMode	
SequencerSetActive	
SequencerSetCount	
sequencerSetSelector	
SetElatEieldCorrection	
Strobe	76
Julii	
Targel Temperature	
	•••••••
limerDelay	
TimerDuration	
TimerReset	
TimerTriggerActivation	
TimerTriggerSource	
UserDefault	
UserOutput0	
UserOutputValue	
UserSet1	
UserSet2	
UserSet1 UserSet2 UserSetControl	
UserSet1 UserSet2 UserSetControl	
UserSet1 UserSet2 UserSetControl UserSetLoad	
UserSet1 UserSet2 UserSetControl UserSetLoad UserSetSave	

Н

브로	다이어그래		21
2 7	ㅋㅋㅋㅋ	 	 ···· ∠ ۱

Х

사양	20
상승 에지	42
서문	6
스트로브 출력	
스펙	20
스펙트럼 응답	22

Ο

영상 획득 기능	.37
유효한 입력 신호	.79

ㅈ

제품	사양.	 20
ᆔᄑ	ETI	10
세품	특싱.	

大

치	걲	2		•		•	•			•						•							•		•							•	•	•	•	•		•	•													•	•	•		•		•									•	•		2)	e	ò
	Ť	-	••	•	• •	•	• •	•••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	4		-	C	

7

카메라	LED 설명8	2
카메라	껐다켜기80	ô
카메라	물리적 리셋80	ô
카메라	온도 관련 파라미터82	2
카메라	픽셀 포맷62	2
카메라	후면부30	C

Е

테스트	패턴	출력	8	3
트리거	신호	입력	회로	86

π

프리런4	1
픽셀 포맷	52

Ò

하강 에지	42
하드웨어 트리거 신호	46
회로도	36
히로세 4핀 커넥터	35
히로세 6핀 커넥터	34

Vieworks Co., Ltd.

41–3, Burim–ro, 170beon–gil, Dongan–gu, Anyang–si, Gyeonggi–do 14055 Republic of Korea Tel: +82–70–7011–6161 Fax: +82–31–386–8631

http://vision.vieworks.com

 \odot

60

vision@vieworks.com