

VP series

User Manual

VIEWORKS

Preface

No part of this manual may either be copied, reproduced, translated, or published in any form or by any means (electronic, mechanical, photocopying, or otherwise) without the express written permission of Vieworks, Co., Ltd. (hereinafter 'Vieworks').

This manual may include the website links to companies other than Vieworks. Vieworks is not responsible for any of these links. The copyrights of the materials mentioned herein are owned by each respective author.

Although Vieworks made every effort to ensure the accuracy of this document, it assumes no responsibility for errors or omissions that may appear herein. The figures in this manual may differ depending on the version of the product or operating system, or the way how it runs. Information in this manual is subject to change without notice.

Before Using This Product

Thank you for choosing VP-152MX2-M16™.

- Make sure to read this manual before using the product.
- Make sure to check whatever a professional engineer has finished installation and configuration.
- Make sure to keep this manual at hand as a reference while using the product.
- This manual assumes that you have expertise in how to use an industrial camera.

The Series

This manual is intended for users of the following products:

VP-152MX2-M16

About This Manual

This manual is intended for VP-152MX2-M16[™] camera users. It is recommended to refer to the Frame Grabber's User Manual of yours, with this manual.

Convention in This Manual

For better understanding, the following conventions are used throughout the manual.

Names and Fonts

The names and fonts of user interfaces are used as follows:

- The menu and icon names in this manual are used as displayed in the product.
- The menu and icon names are marked in this font.
- Button or keyboard key names are marked in this font

Warning, Caution, and Note

This manual shows warnings, cautions, and notes with the following figures:

Warning!

This indicates that you need to follow this message for your safety and to prevent the product from damage.

Caution!

This indicates that you need to follow this message to prevent data from being lost or corrupted.

Note:

This indicates that this message provides additional information.

Definition of Terms

For clarity, this manual defines some terms as follows:

Term	Definition
Preface	The introductory part preceding the Table of Contents in this manual
Application	A program that performs a particular task or set of tasks

Revision History

This document has the revision history as follows:

Version	Date	Description
1.0	2021-09-01	Initial Release
1 1	2022-01-24	Added details for the XML items in the Cooling Control part
1.1	2022-10-12	Added the Max. Frame Rates values in the Specifications part
1.2	2024-03-20	Changed dimensions in chapter 5.2 Specifications
1.2	2024-03-20	Changed drawings in chapter 5.5 Mechanical Specification

Contents

Chapter	1. Precautions	15
Chapter	2. Warranty Coverage	17
Chapter	3. Compliance & Certifications	18
3.1	FCC Compliance	18
3.2	CE : DoC	18
3.3	KC	18
Chapter	4. Package Components	19
	5. Product Specifications	
5.1	Overview	20
5.2	Specifications	
5.3	Camera Block Diagram	22
5.4	Spectral Response	23
5.5	Mechanical Specification	24
Chapter	6. Connecting the Camera	25
6.1	Precaution to Center the Image Sensor	25
6.2	Precaution about Blurring Compared to the Center	
6.3	Installing Vieworks Imaging Solution	
Chapter	7. Camera Interface	2 6
• 7.1	General Description	
7.1	CoaXPress Connector	
7.2		
	7.2.1 Micro-BNC Connector	
7.3	Power Input Receptacle	
7.4	Control Receptacle	
7.5	Trigger Input Circuit	
7.6	Strobe Output Circuit	30
Chapter	8. Acquisition Control	31
8.1	Overview	31
8.2	Acquisition Start/Stop Commands and Acquisition Mode	32

	8.2.1 Exposure Start Trigger	33
	8.2.2 Applying Trigger Signals	34
	8.2.3 Exposure Time Control	35
8.3	Exposure Start Trigger	35
	8.3.1 Trigger Mode	35
	8.3.2 Using a Software Trigger Signal	39
	8.3.3 Using a CoaXPress Trigger Signal	40
	8.3.4 Using an External Trigger Signal	41
	8.3.5 Exposure Mode	42
8.4	Setting the Exposure Time	45
8.5	Overlapping Exposure with Sensor Readout	46
8.6	Global Shutter	47
8.7	Maximum Allowed Frame Rate	
	8.7.1 Increasing the Maximum Allowed Frame Rate	49
Chapter 9	9. Camera Features	50
9.1	Region of Interest	50
9.2	Multi-ROI	54
9.3	Binning	57
9.4	CXP Link Configuration	59
9.5	Pixel Format	60
9.6	Gain and Black Level	61
9.7	Defective Pixel Correction	62
	9.7.1 Correction Method	62
9.8	Dark Signal Non-uniformity Correction	63
	9.8.1 Generating and Saving User DSNU Correction Values	64
9.9	Photo Response Non-uniformity Correction	65
	9.9.1 Generating and Saving User PRNU Correction Values	66
9.10	Flat Field Correction	67

	9.10.1 Flat Field Data Selector	69
9.11	Digital I/O Control	70
9.12	Debounce	72
9.13	Timer Control	73
9.14	Cooling Control	74
9.15	Temperature Monitor	75
9.16	Status LED	75
9.17	Test Pattern	76
9.18	Reverse X	78
9.19	Reverse Y	78
9.20	Device Link Throughput Limit	80
9.21	Device User ID	80
9.22	Device Reset	80
9.23	Field Upgrade	81
9.24	User Set Control	81
9.25	Sequencer Control	83
Chapter 1	.0. Troubleshooting	86
Appendix	A. Defective Pixel Map Download	87
Appendix	B. Field Upgrade	88
Appendix	C. Index	89

Tables

Table 5-1	Specifications VP-152MX2-M16	21
Table 7-1	Channel Assignments for Micro-BNC Connector	27
Table 7-2	Pin Configurations for Power Input Receptacle	28
Table 7-3	Pin Configurations for Control Receptacle	29
Table 8-1	Minimum and Maximum Exposure Time Setting	45
Table 9-1	XML Parameters related to ROI	51
Table 9-2	Minimum ROI Width and Height Settings	51
Table 9-3	Maximum Frame Rates by VP-152MX2-M16 ROI Changes_CXP-6	52
Table 9-4	Maximum Frame Rates by VP-152MX2-M16 ROI Changes_CXP-10	52
Table 9-5	Maximum Frame Rates by VP-152MX2-M16 ROI Changes_CXP-12	53
Table 9-6	XML parameters related to Multi-ROI	54
Table 9-7	XML Parameters related to Binning	57
Table 9-8	XML Parameters related to CXP Link Configuration	59
Table 9-9	XML Parameter related to Pixel Format	60
Table 9-10	XML Parameters related to Gain and Black Level	61
Table 9-11	Calculation of Defect Pixel Correction Value	62
Table 9-12	XML Parameters related to DSNU	63
Table 9-13	XML Parameters related to PRNU	65
Table 9-14	XML Parameters related to Flat Field Correction	69
Table 9-15	XML Parameters related to Digital I/O Control	71
Table 9-16	XML Parameter related to Debounce Time	72
Table 9-17	XML Parameters related to Timer Control	73
Table 9-18	XML Parameters related to Cooling Control	74
Table 9-19	XML Parameters related to Device Temperature	75

Table 9-20	Status LED	75
Table 9-21	XML Parameter related to Test Pattern	76
Table 9-22	XML Parameter related to Reverse X	78
Table 9-23	XML Parameter related to Reverse Y	78
Table 9-24	XML Parameter related to Device Link Throughput Limit	80
Table 9-25	XML Parameter related to Device User ID	80
Table 9-26	XML Parameter related to Device Reset	80
Table 9-27	XML Parameters related to User Set Control	81
Table 9-28	XML Parameters related to Sequencer Control	83

Figures

Figure 5-1	Camera Block Diagram	22
Figure 5-2	Spectral Response	23
Figure 5-3	VP-152MX2-M16 Mechanical Dimension	24
Figure 7-1	VP-152MX2-M16 Back Panel	26
Figure 7-2	Micro-BNC Connector	27
Figure 7-3	Pin Assignments for Power Input Receptacle	28
Figure 7-4	Pin Assignments for Control Receptacle	29
Figure 7-5	Trigger Input Schematic	30
Figure 7-6	Strobe Output Schematic	30
Figure 8-1	Exposure Start Triggering	34
Figure 8-2	Frame Acquisition with Software Trigger Signal	39
Figure 8-3	External Trigger Delay	42
Figure 8-4	Timed Exposure Mode	43
Figure 8-5	Trigger Overlapped with Timed Exposure Mode	43
Figure 8-6	Trigger Width Exposure Mode	44
Figure 8-7	Overlapped Exposure and Readout	46
Figure 8-8	Global Shutter	48
Figure 9-1	Region of Interest	50
Figure 9-2	Multi-ROI	55
Figure 9-3	2 × 2 Binning and 4 × 4 Binning	58
Figure 9-4	CXP Link Configuration	59
Figure 9-5	VP-152MX2-M16 Pixel Format	60
Figure 9-6	Location of Defect Pixel to be corrected	62
Figure 9-7	Generation and Application of Flat Field Data	68

Figure 9-8	Bilinear Interpolated Magnification	68
Figure 9-9	Flat Field Data Selector	70
Figure 9-10	User Output	71
Figure 9-11	Exposure Active Signal	71
Figure 9-12	P. Debounce	72
Figure 9-13	Timer Signal	74
Figure 9-14	Grey Horizontal Ramp	76
Figure 9-15	Grey Diagonal Ramp	77
Figure 9-16	Grey Diagonal Ramp Moving	77
Figure 9-17	Sensor Specific	77
Figure 9-18	Original Image	78
Figure 9-19	Reverse X Image	78
Figure 9-20	Original Image	79
Figure 9-21	Reverse Y Image	79
Figure 9-22	User Set Control	82
Figure 9-23	Sequencer Diagram (Use Case)	84

Chapter 1. Precautions

General

- Do not drop, disassemble, repair or alter the device. Doing so may damage the camera electronics and cause an electric shock.
- Do not let children touch the device without supervision.
- Stop using the device and contact the nearest dealer or manufacturer for technical assistance if liquid such as water, drinks or chemicals gets into the device.
- Do not touch the device with wet hands. Doing so may cause an electric shock.
- Make sure that the temperature of the camera does not exceed the temperature range specified in 5.2 Specifications. Otherwise the device may be damaged by extreme temperature.

Installation and Maintenance

- Do not install in dusty or dirty areas or near an air conditioner or heater to reduce the risk of damage to the device.
- Avoid installing and operating in an extreme environment where vibration, heat, humidity, dust, strong magnetic fields, explosive/corrosive mists or gases are present.
- Do not apply excessive vibration and shock to the device. This may damage the device.
- Avoid direct exposure to a high intensity light source. This may damage the image sensor.
- Do not install the device under unstable lighting conditions. Severe lighting change will affect the quality of the image produced by the device.
- Do not use solvents or thinners to clean the surface of the device. This can damage the surface finish.

Power Supply

- Applying incorrect power can damage the camera. If the voltage applied to the camera is greater or less than the camera's nominal voltage, the camera may be damaged or operate erratically. Please refer to 5.2 Specifications for the camera's nominal voltage.
 - X Vieworks Co., Ltd. does NOT provide power supplies with the devices.
- Make sure the power is turned off before connecting the power cord to the camera.
 Otherwise, damage to the camera may result.

Cleaning the Sensor Surface

Avoid cleaning the surface of the camera's sensor if possible. If you have dust or foreign matter on the sensor surface that will not blow off, use a soft lint free cotton bud dampened with a small quantity of high quality lens cleaner. Because electrostatic discharge (ESD) can damage the sensor, you must use a cloth (e.g. cotton) that will not generate static during cleaning.

Avoid dust or foreign matter on the sensor surface.

The camera is shipped with a protective plastic seal on the camera front. To prevent collecting dust or foreign matter on the camera sensor, make sure that you always put the protective seal in place when there is no lens mounted on the camera. In addition, make sure to always point the camera downward when there is no protective seal on the camera front or no lens mounted.

Procedures for Cleaning the Sensor

If you have dust or foreign matter on the sensor surface, follow the procedures below to wipe off.

- Remove a contaminant by using an ionizing air gun.
 If this step does not remove the contaminant, proceed to the next step.
- 2. Clean the contaminant on the sensor using one drop of lens cleaner on a non-fluffy cotton bud.
- 3. Wipe the cotton bud gently in only one direction (either left to right or right to left). Avoid wiping back and forth with the same cotton bud in order to ensure that the contaminants are removed and not simply transferred to a new location on the sensor surface.
- 4. Mount a lens, set the lens at a smaller aperture (e.g. F8), and then acquire images under bright lighting conditions. Check the images on the monitor for dark spots or stripes caused by the contaminant. Repeat the steps above until there is no contaminant present.

Caution!

If the sensor is damaged due to electrostatic discharge or the sensor surface is scratched during cleaning, the warranty is void.

Chapter 2. Warranty Coverage

The following are excluded from coverage

- The manufacturer is not responsible for any failure of the equipment due to service or modification by unauthorized manufacturers, agents, or technicians.
- The manufacturer is not responsible for any loss or damage to the material caused by the operator's negligence.
- If you use it for purposes other than those for which it was intended, or if damage or failure occurs due to excessive use or negligence.
- Incorrect power use, not used under the conditions of use specified in the user manual.
- Natural disasters such as lightning strikes, earthquakes, fires, floods, etc.
- You replaced or modified parts and software on the equipment without authorization, causing problems.

For product-related questions and service, please contact your dealer or manufacturer.

The warranty period is the period specified in the warranty statement at the time of sale and starts after the equipment leaves the factory.

Chapter 3. Compliance & Certifications

3.1 FCC Compliance

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expenses.

3.2 CE: DoC

EMC Directive 2014/30/EU

EN 55032:2012 (Class A), EN 55024:2010

Class A

3.3 KC

KCC Statement

Type	Description
Class A (Broadcasting Communication Device for Office Use)	This device obtained EMC registration for office use (Class A), and may be used in places other than home. Sellers and/or users need to take note of this.

VP Series User Manual

Chapter 4. Package Components

Package Components

VP-152MX2-M16 with M72 \times 0.75 mount

Chapter 5. Product Specifications

5.1 Overview

The VP-152MX2-M16, the latest model of the industrial proven VP series, is a new 152-megapixel CoaXPress camera and adopts the cutting-edge High Speed CMOS Image Sensor. The VP-152MX2-M16 camera offers up to 16.3 frames per second at 16,544 × 9,200 resolution. This camera uses thermoelectric Peltier (TEC) cooling technology developed for and used by many demanding medical market customers. The TEC maintains the operating temperature of the CMOS image sensor at up to 15 degrees below ambient temperature. This camera provides a stable operating condition and the ability to expose for a long period of time to increase camera sensitivity. Featuring the stable operating capability and high resolution, this camera is ideal for demanding applications such as FPD, PCB and semiconductor inspections.

Main Features

- High Speed 152 Megapixel CMOS Image Sensor
- Thermoelectric Peltier Cooling about 15 degrees below ambient temperature
- Minimizing the number of hot pixels with TEC
- CoaXPress 2.0 Interface up to 16.3 fps at 50 Gbps using 4 channels
- Output Channel: CXP-6/10/12 × 1/2/4
- Electronic Exposure Time Control (Global Shutter)
- Output Pixel Format: 8 / 10 / 12 bit
- Line Output
- Defective Pixel Correction
- Gain / Black Level Control
- Test Pattern
- Temperature Monitor
- Field Upgrade
- DSNU and PRNU Correction
- Flat Field Correction
- GenlCam Compatible XML based Control
- VP-152MX2-M16 Feature Bar

5.2 Specifications

Technical specifications for the VP-152MX2-M16 are as follows.

Specifications		VP-152MX2-M16	
Resolution (H × V)		16544 x 9200	
Sensor		Vieworks	
Sensor Size (dic	igonal)	53.0mm × 29.4 mm (Photo sensitive area)	
Sensor Type		High Speed CMOS Image Sensor	
Pixel size		$3.2~\mu\text{m}~ imes~3.2~\mu\text{m}$	
Max.	CXP-6 × 4	15.6 fps	
Frame Rate	CXP-10 × 4	16.3 fps	
	CXP-12 × 4	16.3 fps	
Interface		CXP-12 4Lanes	
Exposure Time		1 μs ~ 60 s (1 μs step)	
Partial Scan(Max. Speed)		704 fps at 4 Lines, CXP-12(4ch)	
Pixel Data Format		Mono 8 bit, 10 bit, 12 bit	
Electronic Shutter		Global Shutter	
Digital Gain		×1 ~ ×32	
Digital Black Level		0~255 LSB in 12bit Sensor Resolution	
Exposure Mode		Free-Run, Timed, Trigger Width	
External Trigger		3.3 ~ 24.0 V, 10mA, Logical Level Input Optically isolated CoaXPress Control Port(CXP only)	
Software Trigger		Asynchronous, Programmable via Camera API(CXP only)	
Digital IO		TTL Level Exposure Active, Frame Active, User Output, Timer, Strobe Output	
Dynamic Rang	е	12 bit: typical 66 dB (EMVA 1288)	
Cooling Method		Standard cooling with a fan	
Mechanical (W × H × L)		100×100×120 mm, 1.65 kg, M72-Mount	
Environmental		Operating: 0°C ~ 40°C, Storage: -40°C ~ 70°C	
Lens Mount		M72-Mount	
Power	External	11~24V DC	
	Dissipation	Typical: 32W, MAX: 34W	
Compliance		CE, FCC, KC	
API SDK		Vieworks Imaging Solution 7.x	

Table 5-1 Specifications VP-152MX2-M16

5.3 Camera Block Diagram

The block diagram of VP-152MX2-M16 is shown below.

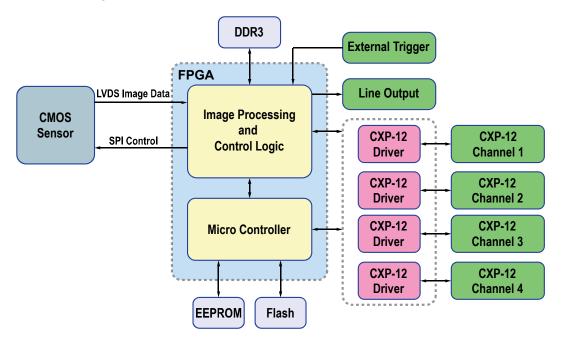


Figure 5-1 Camera Block Diagram

All controls and data processing of the camera are carried out in one FPGA chip. The FPGA generally consists of a 32-bit RISC Micro-Controller and Processing & Control logic. The Micro-Controller receives commands from the user through the CoaXPress 2.0 interface and then processes them.

The Processing & Control logic processes the image data received from the CMOS image sensor and then transmits data through the CoaXPress 2.0 interface. The Processing & Control logic also controls time-sensitive trigger inputs and output signals. Furthermore, Flash and DDR3 are installed outside FPGA. The DDR3 is used to process images and the Flash stores the firmware to operate the Micro-Controller.

5.4 Spectral Response

The following graphs show the spectral response for the VP-152MX2-M16.

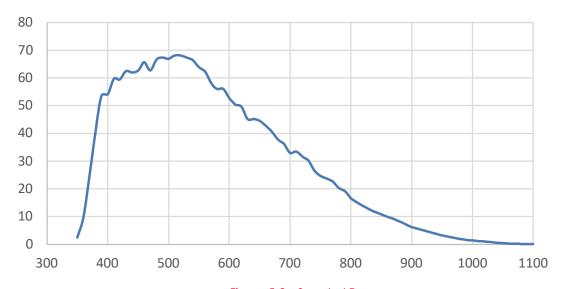


Figure 5-2 Spectral Response

VP Series User Manual

5.5 Mechanical Specification

The camera dimensions in millimeters are shown in the following figure.

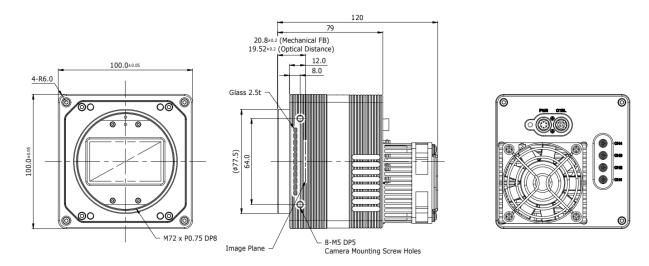


Figure 5-3 VP-152MX2-M16 Mechanical Dimension

Chapter 6. Connecting the Camera

The following instructions assume that you have installed a CoaXPress 2.0 Frame Grabber (hereinafter 'CXP-12 Frame Grabber') in your computer including related software. The procedure below also assumes that you may attempt to configure a link between a camera and CXP-12 Frame Grabber by using four coax cables. For more detailed information, refer to your CXP-12 Frame Grabber User Manual.

To connect the camera to your PC, follow the steps below.

- 1. Make sure that the power supply is not connected to the camera and your computer is turned off.
- 2. Plug one end of a coax cable into the CH1 of the CXP connector on the camera and the other end of the coax cable into the CH1 of the CXP-12 Frame Grabber in your computer. Then, connect the CH2, CH3 and CH4 of the CXP connector on the camera to the CH2, CH3 and CH4 of the CXP-12 Frame Grabber respectively using the other three coax cables.
 - Connect the plug of the power adapter to the power input receptacle on the camera.
 - Plug the power adapter into a working electrical outlet.
- 3. Verify all the cable connections are secure.

6.1 Precaution to Center the Image Sensor

- Users do not need to center the image sensor as it is adjusted as factory default settings.
- When you need to adjust the center of the image sensor, please contact your local dealer or the manufacturer for technical assistance.

6.2 Precaution about Blurring Compared to the Center

- Users do not need to adjust the tilt as it is adjusted as factory default settings.
- If the tilt settings need to be adjusted inevitably, please contact your local dealer or factory representative for technical support.

6.3 Installing Vieworks Imaging Solution

You can download the Vieworks Imaging Solution at http://www.vieworks.com. You should perform the software installation first and then the hardware installation.

Chapter 7. Camera Interface

7.1 General Description

As shown in the following figure, three types of connectors and an LED indicator are located on the back of the camera and have the functions as follows:

① Status LED: displays power status and operation mode.

② 6 pin Power Input Receptacle: supplies power to the camera.

③ 4 pin Control I/O Receptacle: provides access to the camera's I/O lines.

(4) CoaXPress Connector: transmits video data and controls the camera.

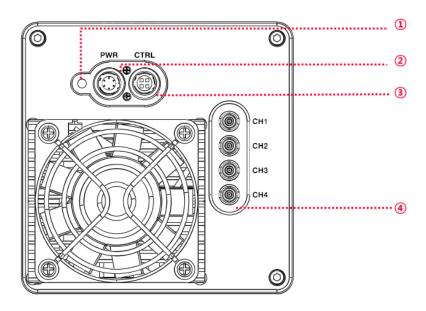


Figure 7-1 VP-152MX2-M16 Back Panel

VP Series User Manual

7.2 CoaXPress Connector

CoaXPress protocol includes an automatic link detection mechanism (Plug and Play) to correctly detect the camera to the CXP-12 Frame Grabber connection. The connection between the camera and CXP-12 Frame Grabber uses a coax (also known as 'coaxial') cable and provides up to 12.5 Gbps bit rate per cable.

7.2.1 Micro-BNC Connector

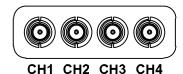


Figure 7-2 Micro-BNC Connector

The CoaXPress connectors on the VP-152MX2-M16 camera comply with the CoaXPress 2.0 standard and the following table shows the channel assignments.

Channel	Max. Bit Rate per Coax	Type
CH1	12.5 Gbps	Master Connection
CH2	12.5 Gbps	Extension Connection
CH3	12.5 Gbps	Extension Connection
CH4	12.5 Gbps	Extension Connection

Table 7-1 Channel Assignments for Micro-BNC Connector

Note:

When you connect a camera to a CXP-12 Frame Grabber using coax cables, make sure to connect the cables to their correct channels. If you connect the CH1 of the CXP connector on the camera to a channel other than CH1 of the CXP-12 Frame Grabber, the camera may not transmit images properly or the communication between the computer and camera may fail.

7.3 Power Input Receptacle

The power input receptacle is a Hirose 6-pin connector (part # HR10A-7R-6PB). The pin assignments and configurations are as follows:

Figure 7-3 Pin Assignments for Power Input Receptacle

Pin Number	Signal	Type	Description
1, 2, 3	+ 12V DC	Input	DC Power Input
4, 5, 6	DC Ground	Input	DC Ground

Table 7-2 Pin Configurations for Power Input Receptacle

Note:

- A recommended mating connector for the Hirose 6-pin connector is the Hirose 6-pin plug (part # HR10A-7P-6S) or the equivalent.
- It is recommended that you use the power adapter, which has at least 3 A current output at 12 V DC \pm 10% voltage output (You need to purchase a power adapter separately.).

Precaution for Power Input

Caution!

- Make sure the power is turned off before connecting the power cord to the camera.
 Otherwise, damage to the camera may result.
- If the voltage applied to the camera is greater than specified in the specifications, damage to the camera may result.

7.4 Control Receptacle

The control receptacle is a Hirose 4-pin connector (part # HR10A-7R-4S) and consists of an external trigger signal input and strobe output ports. The pin assignments and configurations are as follows:

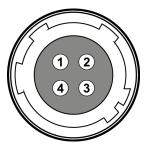


Figure 7-4 Pin Assignments for Control Receptacle

Pin Number	Signal	Туре	Description
1	Trigger Input	Input	$3.3 \text{ V} - 5.0 \text{ V}$ TTL input Input resistance: $1 \text{ k}\Omega$
2	Trigger Input	Input	-
3	DC Ground	-	DC Ground
4	Line 1 Output	Output	3.3 V TTL Output Output resistance: 47Ω

Table 7-3 Pin Configurations for Control Receptacle

Note:

A recommended mating connector for the Hirose 4-pin connector is the Hirose 4-pin plug (part # HR10A-7P-4P) or the equivalent.

7.5 Trigger Input Circuit

The following figure shows trigger signal input circuit of the 4-pin connector. Transmitted trigger signal is applied to the internal circuit through a photo coupler. With the Debounce feature, you can specify the width of input signal to be considered as a valid input signal. An external trigger circuit example is shown below.

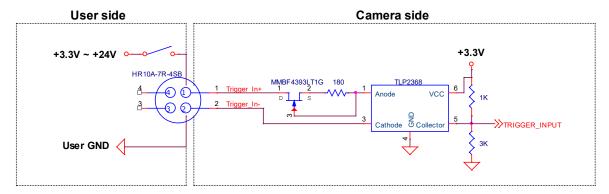


Figure 7-5 Trigger Input Schematic

7.6 Strobe Output Circuit

The strobe output signal comes out through a 3.3 V output level of TTL Driver IC. A pulse width of signal is synchronized with an exposure (shutter) signal of the camera.

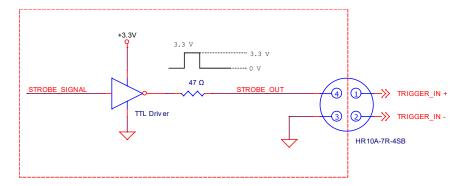


Figure 7-6 Strobe Output Schematic

VP Series User Manual

Chapter 8. Acquisition Control

This chapter provides detailed information about controlling image acquisition.

- Triggering image acquisition
- Setting the exposure time
- Controlling the camera's image acquisition rate
- Variation of the camera's maximum allowed image acquisition rate according to the camera settings

8.1 Overview

This section presents an overview of the elements involved with controlling the acquisition of images.

Three major elements are involved in controlling the acquisition of images.

- Acquisition Start and Acquisition Stop commands and the Acquisition Mode parameter
- Exposure start trigger
- Exposure time control

Note:

A recommended mating connector for the Hirose 4-pin connector is the Hirose 4-pin plug (part # HR10A-7P-4P) or the equivalent.

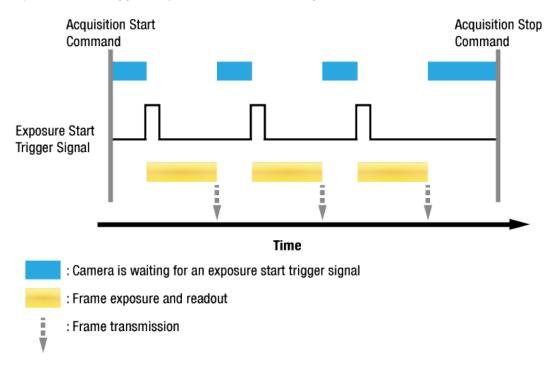
8.2 Acquisition Start/Stop Commands and Acquisition Mode

The Acquisition Start command prepares the camera to acquire images. The camera cannot acquire images unless an Acquisition Start command has first been executed.

Executing an Acquisition Stop command terminates the camera's ability to acquire images.

A parameter called the Acquisition Mode has a direct bearing on how the Acquisition Start command operates. The VP-152MX2-M16 cameras only support Continuous for the Acquisition Mode parameter.

If the Acquisition Mode parameter is set to Continuous, an Acquisition Start command does not expire after a single frame is acquired. Once an Acquisition Start command has been executed, you can acquire as many frames as you like.


The Acquisition Start command will remain in effect until you execute the Acquisition Stop command. Once an Acquisition Stop command has been executed, the camera will not be able to acquire images until a new Acquisition Start command is executed.

8.2.1 Exposure Start Trigger

Applying an exposure start trigger signal to the camera will exit the camera from the waiting for exposure start trigger acquisition status and will begin the process of exposing and reading out a frame (see Figure 8–1). As soon as the camera is ready to accept another exposure start trigger signal, it will return to the waiting for exposure start trigger acquisition status. A new exposure start trigger signal can then be applied to the camera to begin another frame exposure. The exposure start trigger has two modes: off and on.

If the Trigger Mode parameter is set to Off, the camera will generate all required exposure start trigger signals internally, and you do not need to apply exposure start trigger signals to the camera. The rate at which the camera will generate the signals and acquire frames will be determined by the way that you set several frame rate related parameters.

If the Trigger Mode parameter is set to On, you must trigger exposure start by applying exposure start trigger signals to the camera. Each time a trigger signal is applied, the camera will begin a frame exposure. When exposure start is being triggered in this manner, it is important that you do not attempt to trigger frames at a rate that is greater than the maximum allowed (There is a detailed explanation about the maximum allowed frame rate at the end of this chapter.). Exposure start trigger signals applied to the camera when it is not in a waiting for exposure start trigger acquisition status will be ignored.

Figure 8-1 Exposure Start Triggering

8.2.2 Applying Trigger Signals

The paragraphs above mention "applying a trigger signal". There are five ways to apply an exposure start trigger signal to the camera: via Software, via User Output0, via CXPin, via Timer0 Active or via Line0 (commonly referred to a hardware).

- To apply trigger signals via Software, you must set the Trigger Source parameter to Software. At that point, each time a Trigger Software command is executed, the exposure start trigger signal will be applied to the camera.
- To apply trigger signals via User Output0, you must set the Trigger Source parameter to User Output0. At that point, you can apply an exposure start trigger signal to the camera by switching the User Output Value parameter between On (rise) and Off (fall).
- To apply trigger signals via CH1 of the CXP-12 Frame Grabber, you must set the Trigger Source parameter to CXPin. At that point, each time a proper CoaXPress trigger signal is applied to the camera by using the APIs provided by a CXP-12 Frame Grabber manufacturer, the exposure start trigger signal will be applied to the camera. For more information, refer to your CXP-12 Frame Grabber User Manual.
- To apply trigger signals via the user-defined Timer feature, you must set the Trigger Source parameter to Timer() Active. When you set the Timer Trigger Source parameter to Line() in the Counter And Timer Control category, you can apply an exposure start trigger signal to the camera by using a Timer that uses the Line() signal as the source signal.
- To apply trigger signals via hardware (external), you must set the Trigger Source parameter to Line 0. At that point, each time a proper electrical signal is applied to the camera, an occurrence of the exposure start trigger signal will be recognized by the camera.

8.2.3 Exposure Time Control

When an exposure start trigger signal is applied to the camera, the camera will begin to acquire a frame.

A critical aspect of frame acquisition is how long the pixels in the camera's sensor will be exposed to light during the frame acquisition.

If the Trigger Source parameter is set to Software, the Exposure Time parameter will determine the exposure time for each frame.

If the Trigger Source parameter is set to User Output0, CXPin, Timer0 Active or Line0, there are two modes of operation: Timed and Trigger Width.

With the Timed mode, the Exposure Time parameter will determine the exposure time for each frame.

With the Trigger Width mode, the way that you manipulate the rise and fall of the User Output, CoaXPress, Timer or hardware (external) signal will determine the exposure time. The Trigger Width mode is especially useful if you want to change the exposure time from frame to frame.

8.3 Exposure Start Trigger

The Trigger Selector parameter is used to select a type of trigger and only the Exposure Start trigger is available on the VP-152MX2-M16 camera. The Exposure Start trigger is used to begin frame acquisition. Exposure start trigger signals can be generated within the camera or may be applied externally by setting the Trigger Source parameter to Software, User Output0, CXPin, Timer0 Active or Line0. If an exposure start trigger signal is applied to the camera, the camera will begin to expose a frame.

8.3.1 Trigger Mode

The main parameter associated with the exposure start trigger is the Trigger Mode parameter. The Trigger Mode parameter for the exposure start trigger has two available settings: Off and On.

Trigger Mode = Off

When the Trigger Mode parameter is set to Off, the camera will generate all required exposure start trigger signals internally, and you do not need to apply exposure start trigger signals to the camera.

If the Trigger Mode parameter is set to Off, the camera will automatically begin generating exposure start trigger signals when it receives an Acquisition Start command. The camera will continue to generate exposure start trigger signals until it receives an Acquisition Stop command.

Free-Run

When you set the Trigger Mode parameter to Off, the camera will generate all required trigger signals internally. When the camera is set this way, it will constantly acquire images without any need for triggering by the user. This use case commonly referred as "free run".

The rate at which the exposure start trigger signals are generated may be determined by the camera's Acquisition Frame Rate parameter.

- If the parameter is set to a value less than the maximum allowed frame rate with the current camera settings, the camera will generate exposure start trigger signals at the rate specified by the parameter setting.
- If the parameter is set to a value greater than the maximum allowed frame rate with the current camera settings, the camera will generate exposure start trigger signals at the maximum allowed frame rate.

Exposure Time Control with Trigger Mode = Off

When the Trigger Mode parameter is set to Off, the exposure time for each frame acquisition is determined by the value of the camera's Exposure Time parameter. For more information about the Exposure Time parameter, see 8.4 Setting the Exposure Time.

Trigger Mode = On

When the Trigger Mode parameter is set to On, you must apply an exposure start trigger signal to the camera each time you want to begin a frame acquisition. The Trigger Source parameter specifies the source signal that will act as the exposure start trigger signal.

The available settings for the Trigger Source parameter are:

- Software: You can apply an exposure start trigger signal to the camera by executing a Trigger Software command for the exposure start trigger on your computer.
- User OutputO: You can apply an exposure start trigger signal to the camera by switching the User Output Value parameter between On and Off on your computer.
- CXPin: You can apply an exposure start trigger signal via CH1 of the CXP-12 Frame Grabber. For more information, refer to your CXP-12 Frame Grabber User Manual.
- Timer OActive: You can apply an exposure start trigger signal to the camera using a user defined Timer signal. When you set the Timer Trigger Source parameter to LineO in the Counter And Timer Control category, you can specify a delay for the LineO signal by using the Timer Delay parameter. For more information, refer to 9.13 Timer Control.
- Line(): You can apply an exposure start trigger signal to the camera by injecting an externally generated electrical signal (commonly referred to as a hardware or external trigger signal) into the Control I/O receptacle on the camera. Refer to 7.5 Trigger Input Circuit for more information.

You must also set the Trigger Activation parameter after setting the Trigger Source parameter. The available settings for the Trigger Activation parameter are:

- Falling Edge: Specifies that a falling edge of the electrical signal will act as the exposure start trigger.
- Rising Edge: Specifies that a rising edge of the electrical signal will act as the exposure start trigger.

Exposure Time Control with Trigger Mode = On

When the Trigger Mode parameter is set to On and the Trigger Source parameter is set to Software, the exposure time for each frame acquisition is determined by the value of the camera's Exposure Time parameter.

When the Trigger Mode parameter is set to On and the Trigger Source parameter is set to CXPin or LineO, the exposure time for each frame acquisition will be determined by the Exposure Mode parameter settings as follows:

- Exposure Mode = Timed: Exposure time can be controlled with the Exposure Time parameter.
- Exposure Mode = Trigger Width: Exposure time can be controlled by manipulating the external trigger signal.

When the Trigger Mode parameter is set to On and the Trigger Source parameter is set to Timer OActive, the exposure time for each frame acquisition will be determined by the Exposure Mode parameter settings as follows:

- Exposure Mode = Timed: Exposure time can be controlled with the Exposure Time parameter.
- Exposure Mode = Trigger Width: When you set the Timer Trigger Activation parameter to Rising/Falling Edge, the exposure time is controlled with the Timer Duration parameter. When you set the Timer Trigger Activation parameter to Level High/Low, the exposure time can be controlled by manipulating the external trigger signal.

When the Trigger Mode parameter is set to On and the Trigger Source parameter is set to User Output0, the exposure time for each frame acquisition will be determined by the Exposure Mode parameter settings as follows:

- Exposure Mode = Timed: Exposure time can be controlled with the Exposure Time parameter.
- Exposure Mode = Trigger Width: Exposure time can be controlled by switching the User Output Value parameter between On and Off.

8.3.2 Using a Software Trigger Signal

If the Trigger Mode parameter is set to On and the Trigger Source parameter is set to Software, you must apply a software trigger signal (exposure start) to the camera to begin each frame acquisition. Assuming that the camera is in a waiting for exposure start trigger acquisition status, frame exposure will start when the software trigger signal is received by the camera. Figure 8–2 illustrates frame acquisition with a software trigger signal.

When the camera receives a software trigger signal and begins exposure, it will exit the waiting for exposure start trigger acquisition status because at that point, it cannot react to a new exposure start trigger signal. As soon as the camera is capable of reacting to a new exposure start trigger signal, it will automatically return to the waiting for exposure start trigger acquisition status.

The exposure time for each acquired frame will be determined by the value of the camera's Exposure Time parameter.

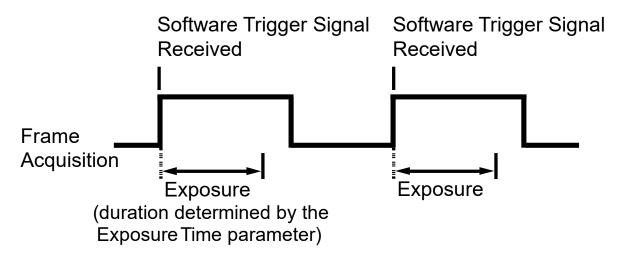


Figure 8-2 Frame Acquisition with Software Trigger Signal

When you are using a software trigger signal to start each frame acquisition, the frame rate will be determined by how often you apply a software trigger signal to the camera, and you should not attempt to trigger frame acquisition at a rate that exceeds the maximum allowed for the current camera settings (There is a detailed explanation about the maximum allowed frame rate at the end of this chapter.). Software trigger signals that are applied to the camera when it is not ready to receive them will be ignored.

8.3.3 Using a CoaXPress Trigger Signal

If the Trigger Mode parameter is set to On and the Trigger Source parameter is set to CXPin, you must apply a CoaXPress trigger signal to the camera to begin each frame acquisition. A CoaXPress trigger signal will act as the exposure start trigger signal for the camera. For more information, refer to your CXP-12 Frame Grabber User Manual.

A rising edge or a falling edge of the CoaXPress signal can be used to trigger frame acquisition. The Trigger Activation parameter is used to select rising edge or falling edge triggering.

Assuming that the camera is in a waiting for exposure start trigger acquisition status, frame acquisition will start whenever the appropriate edge transition is received by the camera.

When the camera receives a CoaXPress trigger signal and begins exposure, it will exit the waiting for exposure start trigger acquisition status because at that point, it cannot react to a new exposure start trigger signal.

As soon as the camera is capable of reacting to a new exposure start trigger signal, it will automatically return to the waiting for exposure start trigger acquisition status.

When the camera is operating under control of a CoaXPress signal, the period of the CoaXPress trigger signal will determine the rate at which the camera is acquiring frames:

$\frac{1}{\text{CoaXPress signal period in seconds}} = \text{Frame Rate}$

For example, if you are operating a camera with a CoaXPress trigger signal period of 50 ms(0.05 s): So in this case, the frame rate is 20 fps.

8.3.4 Using an External Trigger Signal

If the Trigger Mode parameter is set to On and the Trigger Source parameter is set to LineO, an externally generated electrical signal injected into the Control I/O receptacle will act as the exposure start trigger signal for the camera. This type of trigger signal is generally referred to as a hardware trigger signal.

A rising edge or a falling edge of the external signal can be used to trigger frame acquisition. The Trigger Activation parameter is used to select rising edge or falling edge triggering.

Assuming that the camera is in a waiting for exposure start trigger acquisition status, frame acquisition will start whenever the appropriate edge transition is received by the camera.

When the camera receives an external trigger signal and begins exposure, it will exit the waiting for exposure start trigger acquisition status because at that point, it cannot react to a new exposure start trigger signal.

As soon as the camera is capable of reacting to a new exposure start trigger signal, it will automatically return to the waiting for exposure start trigger acquisition status.

When the camera is operating under control of an external signal, the period of the external trigger signal will determine the rate at which the camera is acquiring frames:

External signal period in seconds = Frame Rate

For example, if you are operating a camera with an External trigger signal period of 50 $\,$ ms (0.05 $\,$ s):

So in this case, the frame rate is 20 fps.

External Trigger Delay

When you set the Trigger Source parameter to TimerOActive, you can specify a delay between the receipt of a hardware trigger signal and when the trigger becomes effective.

- 1. Set the Timer Trigger Source parameter in the Counter And Timer Control category to Line 0.
- 2. Set the Timer Delay parameter to the desired Timer delay in microseconds.
- 3. Set the Trigger Source parameter in the Acquisition Control category to TimerOActive.
- 4. Execute the Acquisition Start command and inject an externally generated electrical signal into the Control I/O receptacle. Then, the delay set by the Timer Delay parameter expires and the exposure for image acquisition begins.

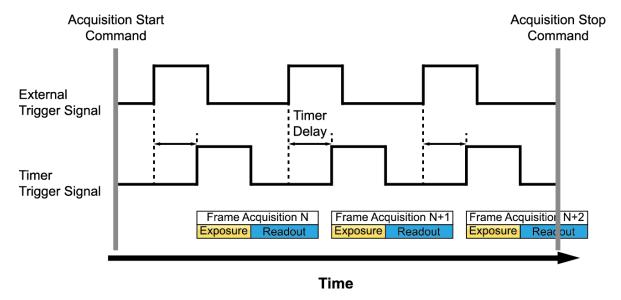


Figure 8-3 External Trigger Delay

8.3.5 Exposure Mode

If you are triggering the start of frame acquisition with an externally (CoaXPress or External) generated trigger signal, two exposure modes are available: Timed and Trigger Width.

Timed Exposure Mode

When the Timed mode is selected, the exposure time for each frame acquisition is determined by the value of the camera's Exposure Time parameter. If the camera is set for rising edge triggering, the exposure time starts when the external trigger signal rises. If the camera is set for falling edge triggering, the exposure time starts when the external trigger signal falls. The following figure illustrates Timed exposure with the camera set for rising edge triggering.

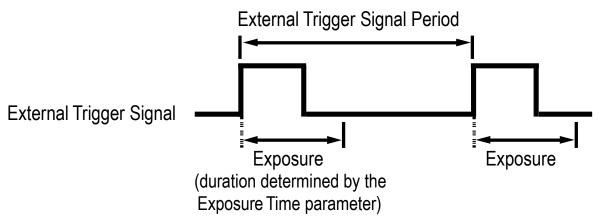


Figure 8-4 Timed Exposure Mode

Note that if you attempt to trigger a new exposure start while the previous exposure is still in progress, the trigger signal will be ignored.

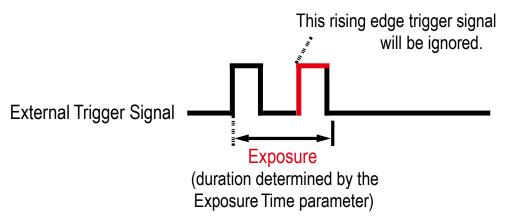


Figure 8-5 Trigger Overlapped with Timed Exposure Mode

Trigger Width Exposure Mode

When the Trigger Width exposure mode is selected, the length of the exposure for each frame acquisition will be directly controlled by the external trigger signal (CoaXPress or External). If the camera is set for rising edge triggering, the exposure time begins when the external trigger signal rises and continues until the external trigger signal falls. If the camera is set for falling edge triggering, the exposure time begins when the external trigger signal falls and continues until the external trigger signal rises. The following figure illustrates Trigger Width exposure with the camera set for rising edge triggering.

Trigger Width exposure is especially useful if you intend to vary the length of the exposure time for each frame.



Figure 8-6 Trigger Width Exposure Mode

8.4 Setting the Exposure Time

This section describes how the exposure time can be adjusted manually by setting the value of the Exposure Time parameter. If you are operating the camera in any one of the following ways, you must specify an exposure time by setting the camera's Exposure Time parameter.

- the Trigger Mode is set to Off.
- the Trigger Mode is set to On and the Trigger Source is set to Software.
- the Trigger Mode is set to On, the Trigger Source is set to User Output(), CXPin, Timer() Active or Line(), and the Exposure Mode is set to Timed.

The Exposure Time parameter must not be set below a minimum specified value. The Exposure Time parameter sets the exposure time in microseconds (μ s). The minimum and maximum exposure time settings for the VP-152MX2-M16 camera are shown in the following table.

Camera Model	Number of Channels	Minimum Exposure Time	Maximum Exposure Time††
VC-65MX2-71 I	1 / 2 / 4 Channel	1 μs	60,000,000 μs

t: The actual exposure time is determined by adding the **Exposure Time** value in the **Timed** or **Trigger Width** items to the **Exposure Offset** value of user's choice.

Table 8-1 Minimum and Maximum Exposure Time Setting

^{#:} When the **Exposure Mode** is set to **Trigger Width**, the exposure time is controlled by the external trigger signal and has no maximum limit.

8.5 Overlapping Exposure with Sensor Readout

The frame acquisition process on the camera includes two distinct parts. The first part is the exposure of the pixels in the image sensor. Once exposure is complete, the second part of the process – readout of the pixel values from the sensor – takes place. In regard to this frame acquisition process, the VP-152MX2-M16 camera basically operates with 'overlapped' exposure so that the exposure for a new frame can be overlapped with the sensor readout for the previous frame.

When a new trigger signal is applied to the camera while reading out the previous frame, the camera begins the process of exposing a new frame. This situation is illustrated in the following figure with the Trigger Mode set to On, the Trigger Source set to LineO and the Exposure Mode set to Trigger Width.

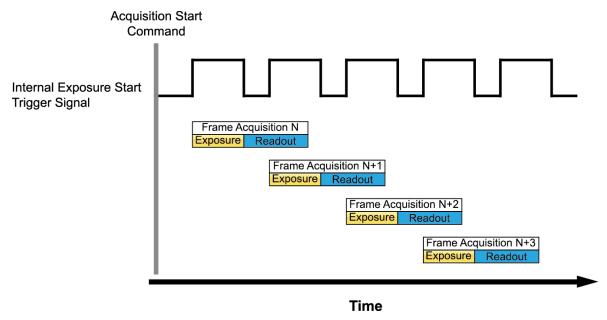


Figure 8-7 Overlapped Exposure and Readout

Determining whether your camera is operating with overlapped exposure and readout is not a matter of issuing a command or changing a setting. Rather a way that you operate the camera will determine whether the exposures and readouts are overlapped or not. If we define the "Frame Period" as the time from the start of exposure for one frame acquisition to the start of exposure for the next frame acquisition, then:

• Overlapped: Frame Period ≤ Exposure Time + Readout Time

Guidelines for Overlapped Exposure

Since the VP-152MX2-M16 camera operates with overlapped exposure, you must keep in mind two important guidelines:

- You must not begin the exposure for a new frame while the exposure for the previous frame is in progress.
- You must not end the exposure for the current frame until the readout for the previous frame is complete.

When you are operating the camera with overlapped exposure and using an external trigger signal to trigger image acquisition, you could use the camera's Exposure Time parameter settings and timing formula to calculate when it is safe to begin each new acquisition.

8.6 Global Shutter

The VP-152MX2-M16 camera is equipped with an image sensor that has an electronic global shutter. When an exposure start trigger signal is applied to the camera equipped with a global shutter, exposure begins for all lines in the sensor as shown in the figure below. Exposure continues for all lines in the sensor until the programmed exposure time ends or when the exposure start trigger signal ends the exposure time if the camera is using the trigger width exposure mode. At the end of the exposure time, exposure ends for all lines in the sensor. Immediately after the end of exposure, pixel data readout begins and proceeds line by line until all pixel data is read out of the sensor. A main characteristic of a global shutter is that for each frame acquisition, all of the pixels in the sensor start exposing at the same time and all end exposing at the same time. This means that image brightness tends to be more uniform over the entire area of each acquired image, and it helps to minimize problems with acquiring images of object in motion.

The camera can provide an Exposure Active output signal that will go high when the exposure time for a frame acquisition begins and will go low when the exposure time ends.

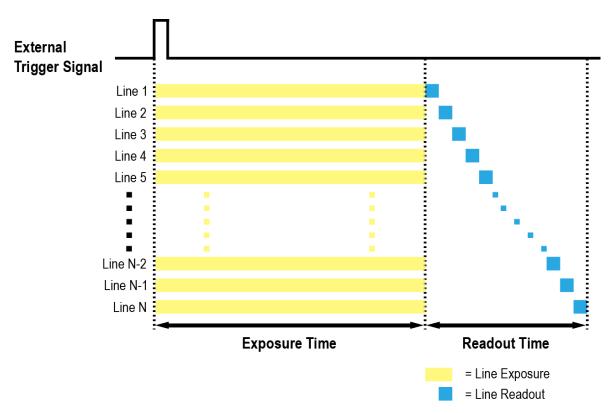


Figure 8-8 Global Shutter

8.7 Maximum Allowed Frame Rate

In general, the maximum allowed acquisition frame rate on the camera may be limited by several factors:

- The amount of time that it takes to transmit an acquired frame from the camera to your computer.

 The amount of time needed to transmit a frame depends on the bandwidth assigned to the camera.
- The amount of time it takes to read an acquired frame out of the image sensor and into the camera's frame buffer. This time varies depending on the setting for ROI. Frames with a smaller height and/or width take less time to read out of the sensor. The frame height and width are determined by the camera's Height and Width settings in the Image Format Control category.
- The CXP Link Configuration. When the camera is set for a CXP Link Configuration that uses more channels, it can typically transfer data out of the camera faster than when it is set for a CXP Link Configuration that uses less channels.
- The exposure time for acquired frames. If you use very long exposure time, you can acquire fewer frames per second.

8.7.1 Increasing the Maximum Allowed Frame Rate

You may find that you would like to acquire frames at a rate higher than the maximum allowed with the camera's current settings. In this case, you must adjust one or more of the factors that can influence the maximum allowed frame rate and then check to see if the maximum allowed frame rate has increased.

- The time that it takes to transmit a frame out of the camera is the main limiting factor on the frame rate. You can decrease the frame transmission time (and thus increase the maximum allowed frame rate) by using the ROI feature. Decreasing the size of the Image ROI may increase the maximum allowed frame rate. If possible, decrease the height and/or width of the Image ROI.
- If you are using a CXP Link Configuration with a low number of channels, consider using a CXP Link Configuration with a high number of channels. This will usually increase the maximum allowed frame rate.
- If you are using normal exposure times and you are using the camera at its maximum resolution, your exposure time will not normally restrict the frame rate. However, if you are using long exposure time, it is possible that your exposure time is limiting the maximum allowed frame rate. If you are using a long exposure time, try using a shorter exposure time and see if the maximum allowed frame rate increases (You may need to compensate for a lower exposure time by using a brighter light source or increasing the opening of your lens aperture.).

Note:

A very long exposure time severely limits the camera's maximum allowed frame rate. As an example, assume that your camera is set to use a 1 second exposure time. In this case, because each frame acquisition will take at least 1 second to be completed, the camera will only be able to acquire a maximum of one frame per second.

Chapter 9. Camera Features

9.1 Region of Interest

The Image Region of Interest (ROI) feature allows you to specify a portion of the sensor array. You can acquire only the frame data from the specified portion of the sensor array while preserving the same quality as you acquire a frame from the entire sensor array.

With the ROI feature, you can increase the maximum allowed frame rate by decreasing the Width and/or Height parameters. The ROI is referenced to the top left corner [origin (0, 0)] of the sensor array as shown below.

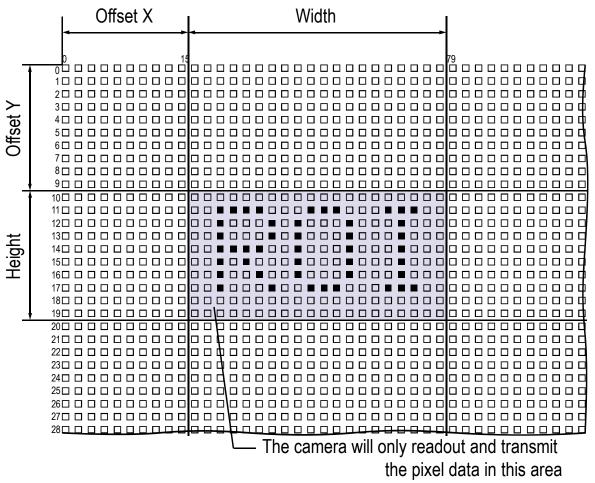


Figure 9-1 Region of Interest

The XML parameters related to ROI settings are as follows.

XML Parameters	XML Parameters		Description
ImageFormatControl	SensorWidtha	-	Effective width of the sensor
	SensorHeight ^a	-	Effective height of the sensor
	WidthMax	-	Maximum allowed width of the image with the current camera settings
	HeightMax	-	Maximum allowed height of the image with the current camera settings
	Widthb	-	Sets the Width of the Image ROI.
	Height ^b	-	Sets the Height of the Image ROI.
	OffsetX ^c	-	Sets the horizontal offset from the origin to the Image ROI.
	OffsetYc	-	Sets the vertical offset from the origin to the Image ROI.

The unit for all parameters in this table is pixel.

Table 9-1 XML Parameters related to ROI

You can change the size of ROI by setting the Width and Height parameters in the Image Format Control category. You can also change the position of the ROI origin by setting the Offset X and Offset Y parameters. Make sure that the Width + Offset X value is less than the Width Max value, and the Height + Offset Y value is less than the Height Max value. You must set the size of the ROI first, and then set the Offset values since the Width and Height parameters are set to its maximum value by default.

• On the VP-152MX2-M16 camera, the Width parameter must be set to a multiple of 16, and the Height parameter must be set to a multiple of 2.

The minimum allowed setting values for the ROI Width and Height are shown below.

Camera Model	Minimum Width Settings	Minimum Height Settings
VP-152MX2-M16	64	4

Table 9-2 Minimum ROI Width and Height Settings

a: Read only. User cannot change the value.

b: User configurable parameters for setting ROI

c: User configurable parameters for setting the origin of the ROI

On the VP-152MX2-M16 camera, the maximum allowed frame rates depending on Horizontal and Vertical ROI changes are shown below.

ROI Size (H \times V)	1 Channel	2 Channels	4 Channels
16544 × 1000	30.4 fps	60.9 fps	120.9 fps
16544 × 3000	11.5 fps	23.0 fps	45.6 fps
16544 × 5000	7.1 fps	14.1 fps	28.1 fps
16544 × 6000	5.9 fps	11.9 fps	23.6 fps
512 × 9200	16.3 fps	16.3 fps	16.3 fps
1008 × 9200	16.3 fps	16.3 fps	16.3 fps
3008 × 9200	16.3 fps	16.3 fps	16.3 fps
5008 × 9200	12.9 fps	16.3 fps	16.3 fps
7008 × 9200	9.2	16.3	16.3
9008 × 9200	7.2	14.3	16.3
11008 × 9200	5.8	11.7	16.3
13008 × 9200	4.9 fps	9.9 fps	16.3 fps
16544 × 9200	3.9	7.8	15.5

Table 9-3 Maximum Frame Rates by VP-152MX2-M16 ROI Changes_CXP-6

ROI Size (H \times V)	1 Channel	2 Channels	4 Channels
16544 × 1000	48.7 fps	96.7 fps	126.5 fps
16544 × 3000	18.3 fps	36.5 fps	47.7 fps
16544 × 5000	11.3 fps	22.5 fps	29.4 fps
16544 × 6000	9.5 fps	18.9 fps	24.7 fps
512 × 9200	16.3 fps	16.3 fps	16.3 fps
1008 × 9200	16.3 fps	16.3 fps	16.3 fps
3008 × 9200	16.3 fps	16.3 fps	16.3 fps
5008 × 9200	16.3 fps	16.3 fps	16.3 fps
7008 × 9200	14.7	16.3	16.3
9008 × 9200	11.5	16.3	16.3
11008 × 9200	9.3	16.3	16.3
13008 × 9200	7.9 fps	15.8 fps	16.3 fps
16544 × 9200	6.2	12.4	16.3

Table 9-4 Maximum Frame Rates by VP-152MX2-M16 ROI Changes_CXP-10

ROI Size (H \times V)	1 Channel	2 Channels	4 Channels
16544 × 1000	60.9 fps	120.9 fps	125.5 fps
16544 × 3000	23.0 fps	45.6 fps	47.7 fps
16544 × 5000	14.1 fps	28.1 fps	29.4 fps
16544 × 6000	11.9 fps	23.6 fps	24.7 fps
512 × 9200	16.3 fps	16.3 fps	16.3 fps
1008 × 9200	16.3 fps	16.3 fps	16.3 fps
3008 × 9200	16.3 fps	16.3 fps	16.3 fps
5008 × 9200	16.3 fps	16.3 fps	16.3 fps
7008 × 9200	16.3	16.3	16.3
9008 × 9200	14.3	16.3	16.3
11008 × 9200	11.7	16.3	16.3
13008 × 9200	9.9 fps	16.3 fps	16.3 fps
16544 × 9200	7.8	15.5	15.5

Table 9-5 Maximum Frame Rates by VP-152MX2-M16 ROI Changes_CXP-12

Caution!

Your CXP-12 Frame Grabber may place additional restrictions on how the ROI location and size must be set. Refer to your CXP-12 Frame Grabber user manual for more information.

9.2 Multi-ROI

The VP-152MX2-M16 camera provides the Multi-ROI feature which allows you to define up to 32 regions of the sensor array. When an image is acquired, only the pixel information from the defined regions will be readout of the sensor. The pixel data read out of the regions will then be combined together and will be transmitted from the camera as a single image.

The XML parameters related to Multi-ROI are as follows.

XML Parameter	XML Parameters		Description
MultiROIControl	MultiROISelector	-	Selects the ROI to set.
	MultiROIMode	On/Off	Enables / Disables the selected ROI.
	MultiROIWidth	_	Width setting for the selected ROI
	MultiROIHeight	-	Height setting for the selected ROI
	MultiROIOffsetX	-	Horizontal offset from the origin to the selected ROI
	MultiROIOffsetY	-	Vertical offset from the origin to the selected ROI
	MultiROIValida	-	Verifies the validation of the Multi-ROI setting values.
	MultiROIStatus	Active/Inactive	Displays the status of the Multi ROI feature. Active: The Multi-ROI feature is in use. Inactive: The Multi-ROI feature is not in use.

The unit for all parameters in this table is pixel.

Table 9-6 XML parameters related to Multi-ROI

It is recommended that you first set the Multi-ROI Width parameter, since all of the regions must be the same width. The next step in the setup process is to define each individual region as desired. Up to 31 regions can be set up ranging from 0 through 32. Use the Multi-ROI Selector parameter to select which ROI to set and then set the ROI to On/Off by using the Multi-ROI Mode parameter. Then, set the Multi-ROI Offset X, Multi-ROI Offset Y and Multi-ROI Height parameters to define each region.

a: If the setting values for the Multi-ROI feature are valid, 'True' will be returned or the check box will be selected.

In the figure below, for example, three regions have been set. With these settings, the camera would output an image as follows:

MultiROI Width × the total height of the three regions (Region0 Height + Region1 Height + Region2 Height)

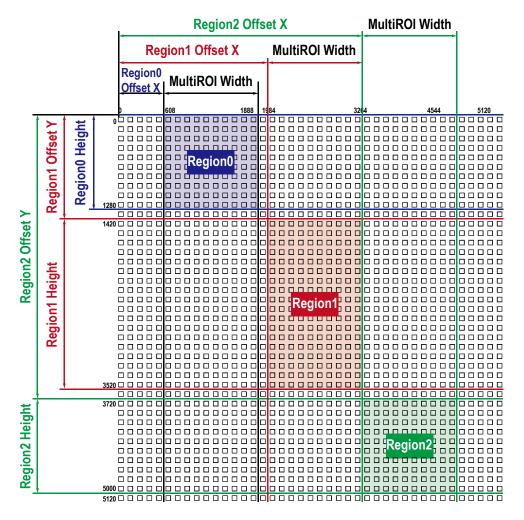
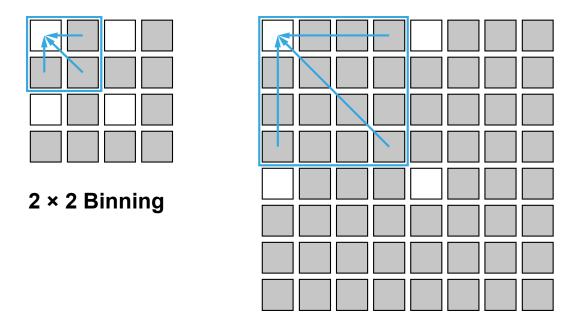


Figure 9-2 Multi-ROI

There are several things to keep in mind when setting the Multi-ROI feature on the VP-152MX2-M16 camera:

- The sum of the Multi-ROI Offset X value plus the Multi-ROI Width value must not exceed the width of the camera's sensor.
- The sum of the Multi-ROI Offset Y value plus the Multi-ROI Height value must not exceed the height of the camera's sensor.
- The Multi-ROI Offset X and Multi-ROI Width value must be a multiple of 16.
- The Multi-ROI Offset Y and Multi-ROI Height value must be a multiple of 2.
- The MultiROI Width values are equal, so the widths of the Region 0, Region 1, and Region 2 are the same in the figure above.
- You can save the Multi-ROI setting values as a User Set and then load the values to the camera when desired. For more information, refer to 9.24 User Set Control.

9.3 Binning


The Binning has the effects of increasing the level value and decreasing resolution by summing the values of the adjacent pixels and sending them as one pixel. The XML parameters related to Binning are as follows.

XML Parameters		Value	Description
ImageFormat	BinningSelector	Sensor	N/A
Control		Logic	Applies the Binning in digital by the logic.
	BinningHorizontal Mode	Sum	Adds pixel values from the adjacent pixels as specified in the Binning Horizontal, and then sends them as one pixel.
		Average	Adds pixel values from the adjacent pixels as specified in the Binning Horizontal, and calculates average of those, and then sends them as one pixel.
	BinningVertical Mode	×1, ×2, ×4	The number of horizontal pixels to combine together.
		Sum	Adds pixel values from the adjacent pixels as specified in the Binning Vertical, and then sends them as one pixel.
		Average	Adds pixel values from the adjacent pixels as specified in the Binning Vertical, and calculates average of those, and then sends them as one pixel.
	BinningVertical	×1, x2, ×4	The number of vertical pixels to combine together.

Table 9-7 XML Parameters related to Binning

For example, if you set 2×2 binning, the camera's resolution is reduced to 1/4. If you set the Binning Mode to Sum, the maximum allowed resolution of the image is reduced 1/2 and the responsivity of the camera is quadrupled. If you set the Binning Mode to Average, the maximum allowed resolution of the image is reduced to 1/2, but there is no difference in responsivity between a binned image and an original image. The Width Max and Height Max parameter, indicating the maximum allowed resolution of the image with the current camera settings, will be updated depending on the binning settings. And also, the Width, Height, Offset X and Offset Y parameters will be updated depending on the binning settings. You can verify the current resolution through the Width and Height parameters.

4 × 4 Binning

Figure 9-3 2×2 Binning and 4×4 Binning

9.4 CXP Link Configuration

The VP-152MX2-M16 camera must be connected to a CXP-12 Frame Grabber of CXP 2.0 interface. CoaXPress 2.0 interface allows you to connect a camera to a Frame Grabber supporting CXP 2.0 by using simple coax cabling and allows up to 12.5 Gbps data rate per cable. The VP-152MX2-M16 camera supports one master connection and up to three extension connections to configure a link. In compliance with the CoaXPress standard, the camera includes an automatic link detection mechanism (Plug and Play) to correctly detect the camera to CXP-12 Frame Grabber connections.

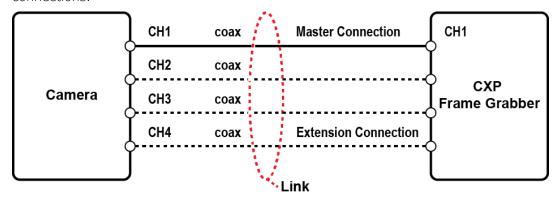


Figure 9-4 CXP Link Configuration

The XML parameters related to the link configuration between the camera and CXP-12 Frame Grabber are as follows.

XML Parameters		Value	Description
CoaXPress	CxpLinkConfiguration Preferred	Read Only	Displays bit rate and the number of connections to be set for the link configuration between the camera and Host (Frame Grabber) while discovering devices. Saves the current CxpLinkConfiguration values as the CxpLinkConfigurationPreferred value when you execute the User Set Save parameter.
	CxpLinkConfiguration	CXP6_X1 CXP6_X2 CXP6_X4 CXP10_X1 CXP10_X2 CXP10_X4 CXP12_X1 CXP12_X1 CXP12_X2 CXP12_X4	Sets bit rate and the number of connections for the link configuration. e.g. CXP12_X4: Four connections running at a maximum of CXP12 speed (12.5 Gbps)

Table 9-8 XML Parameters related to CXP Link Configuration

9.5 Pixel Format

The VP-152MX2-M16 camera processes image data in the unit of 12 bit. The pixel format of the image data is available to be chosen among 8 bit, 10 bit, or 12 bit with the Pixel Format parameter. For instance, the 2 least significant bits will be dropped from overall 10 bits when the camera is set for 10-bit pixel format.

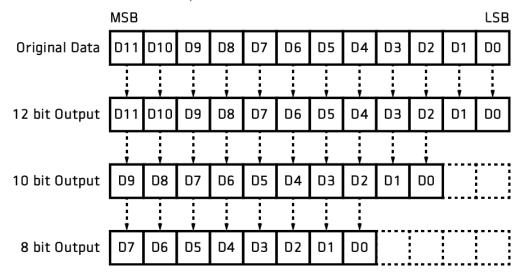


Figure 9-5 VP-152MX2-M16 Pixel Format

The XML parameter related to Pixel Format is as follows.

XML Parameter		Description
ImageFormatControl	PixelFormat	Sets the pixel format supported by the device.

Table 9-9 XML Parameter related to Pixel Format

The available pixel formats on VP-152MX2-M16 are 8/10/12 bit.

9.6 Gain and Black Level

Increasing the Gain parameter increases all pixel values of the image. This results in a higher grey value output from the camera for a given amount of output from the image sensor.

- 1. Selects the Gain Control (Analog All or Digital All are available) to be adjusted by using the Gain Selector parameter.
- 2. Sets the Gain parameter to the desired value.

Adjusting the Black Level parameter will result in an offset to the pixel values output from the camera.

- 1. Selects the Black Level Control (Digital All is only available) to be adjusted by using the Black Level Selector parameter.
- 2. Sets the Black Level parameter to the desired value. The available setting range varies depending on the Pixel Format settings.

The YMI	parameters	related to	Gain	and Black	Level ar	a ac follows
	Dai allietei S	ו פומנפט ננ) Gaiii	allu black	Level all	z as iuliuws.

XML Parameter	rs	Value	Description
Analog Control	GainSelector	Analog All	Applies the Gain value to all analog channels.
		Digital All	Applies the Gain value to all digital channels.
	Gain	1.3x - 5.2x	Sets an analog gain value.
		1.0× — 32.0×	Sets a digital gain value.
	BlackLevel Selector	Digital All	Applies the Black Level value to all digital channels.
	BlackLevel	8 bit: 0 ~ 15.93 10 bit: 0 ~ 63.75 12 bit: 0 ~ 255.00	Sets a black level value

Table 9-10 XML Parameters related to Gain and Black Level

9.7 Defective Pixel Correction

The CMOS sensor may have defect pixels which cannot properly react to the light. Correction is required since it may deteriorate the quality of output image. Defect pixel information of CMOS used for each camera is entered into the camera during the manufacturing process. If you want to add defect pixel information, it is required to enter coordinate of new defect pixel into the camera. For more information, refer to Appendix A.

9.7.1 Correction Method

A correction value for a defect pixel is calculated based on the valid pixel value adjacent in the same line.

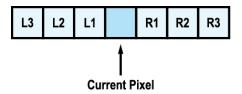


Figure 9-6 Location of Defect Pixel to be corrected

If the Current Pixel is a defect pixel as shown in the figure above, the correction value for this pixel is obtained as shown in the following table depending on whether surrounding pixels are defect pixels or not.

Adjacent Defect Pixel	Correction Value of Current Pixel
None	(L1 + R1) / 2
L1	R1
R1	L1
L1, R1	(L2 + R2) / 2
L1, R1, R2	L2
L2, L1, R1	R2
L2, L1, R1, R2	(L3 + R3) / 2
L2, L1, R1, R2, R3	L3
L3, L2, L1, R1, R2	R3

Table 9-11 Calculation of Defect Pixel Correction Value

9.8 Dark Signal Non-uniformity Correction

In theory, when a digital camera acquires images in complete darkness, all of the pixel values in the image should be near zero and they should be equal. In practice, however, slight variations in the performance of the pixels in the sensor will cause some variations in the pixel values output from the camera when the camera is acquiring in darkness. This variation is known as Dark Signal Non-uniformity (DSNU). The VP-152MX2-M16 cameras provide the DSNU Correction feature.

The XML parameters related to DSNU are as follows.

XML P	arameters	Value	Description	
DSNU	DSNU DSNUDataSelector	Default	Selects Default as a non-volatile memory location to load DSNU data from.	
			Selects a user defined location as a non-volatile memory location to save DSNU data to or load DSNU data from.	
	DSNUDataGenerate	-	Generates the DSNU data for the current camera settings.	
	DSNUDataSave	-	Saves the generated DSNU data in the non-volatile memory. The generated data by executing the DSNUDataGenerate command are saved in the volatile memory so that the data are lost if the camera is reset or if power is turned off. To use the data after the camera is powered on or reset, save them in the non-volatile memory.	
	DSNUDataLoad	-	Loads the DSNU data from the non-volatile memory into the volatile memory.	

Table 9-12 XML Parameters related to DSNU

9.8.1 Generating and Saving User DSNU Correction Values

To generate and save user DSNU correction values, use the following procedure.

Note:

- For optimum DSNU correction results, we recommend that you generate DSNU data after the temperature of the camera housing has been stabilized.
- Before generating DSNU data, set the FFC feature to Off.
- 1. To obtain the optimum DSNU correction values, set the ROI to the actual settings you will be using during normal operation.
- 2. Ensure that the camera will be acquiring images in complete darkness by covering the camera lens, closing the iris in the lens, or darkening the room.
- 3. Begin acquiring images by setting the camera for the Free-Run mode.
- 4. Execute the DSNU Data Generate command to generate DSNU data for the current camera settings.
- 5. The generated DSNU correction values will be activated and saved in the camera's volatile memory.
- 6. To save the generated DSNU correction values in the camera's Flash (non-volatile) memory, use the DSNU Data Selector parameter to specify a location to save the DSNU correction values, and then execute the DSNU Data Save command. The previous DSNU values saved in the memory will be overwritten.
 - To disregard the generated DSNU correction values and load the existing values in the Flash memory, use the DSNU Data Selector parameter to select a desired DSNU correction values, and then execute the DSNU Data Load command.

9.9 Photo Response Non-uniformity Correction

In theory, when a line scan camera acquires images with the camera viewing a uniform light-colored target in bright light, all of the pixel values in the image should be near the maximum grey value and they should be equal. In practice, however, slight variations in the performance of the pixels in the sensor, variations in the optics, and variations in the lighting will cause some variations in the pixel values output from the camera. This variation is known as Photo Response Non-uniformity (PRNU). The VP-152MX2-M16 cameras provide the PRNU Correction feature.

The XML parameters related to PRNU are as follows.

XML F	Parameters	Value	Description
PRNU	PRNU PRNUNUDataSelector	Default	Selects Default as a non-volatile memory location to load PRNU data from.
		Space1 - 3	Selects a user defined location as a non-volatile memory location to save PRNU data to or load PRNU data from.
	PRNUDataGenerate	-	Generates the PRNU data for the current camera settings.
	PRNUDataSave	-	Saves the generated PRNU data in the non-volatile memory. The generated data by executing the PRNUDataGenerate command are saved in the volatile memory so that the data are lost if the camera is reset or if power is turned off. To use the data after the camera is powered on or reset, save them in the non-volatile memory.
	PRNUDataLoad	-	Loads the PRNU data from the non-volatile memory into the volatile memory.

Table 9-13 XML Parameters related to PRNU

9.9.1 Generating and Saving User PRNU Correction Values

To generate and save user PRNU correction values, use the following procedure.

Note:

To generate the optimum PRNU data,

- we recommend that you generate DSNU correction values first before generating PRNU correction values.
- set the FFC feature to Off before generating PRNU correction values.
- the grey reference image must be acquired at uniform illumination. We strongly recommend that you use a high-quality light source to deliver uniform illumination. Standard illumination may not be appropriate.

The PRNU correction values stored in Default are optimized for use in typical situations and will provide good camera performance in most cases. Use of the values stored in Default is recommended.

- 1. To generate PRNU correction values suitable for your operating conditions, set the ROI to the actual settings you will be using during normal operation. We strongly recommend that you use the Default PRNU correction values stored in Default, if you cannot set up the uniform illumination.
- Without mounting a lens on the camera, place a uniform illumination (e.g. backlight) in the field of view of the camera. Set up the camera as you would for normal operation. We recommend that you make adjustments to achieve the digital output level in a range from 150 to 200 (Gain: 1.00 at 8 bit).
- 3. Begin acquiring images by setting the camera for the Free-Run mode.
- 4. Execute the PRNU Data Generate command to generate PRNU correction values for the current camera settings.
- 5. The generated PRNU correction values will be activated and saved in the camera's volatile memory.
- 6. To save the generated PRNU correction values in the camera's Flash (non-volatile) memory, use the PRNU Data Selector parameter to specify a location to save the PRNU correction values, and then execute the PRNU Data Save command. The previous PRNU values saved in the memory will be overwritten.

To disregard the generated PRNU correction values and load the existing values in the Flash memory, use the PRNU Data Selector parameter to select a desired PRNU correction values, and then execute the PRNU Data Load command.

9.10 Flat Field Correction

The Flat Field Correction feature improves the image uniformity when you acquire a non-uniformity image due to external conditions. The Flat Field Correction feature of the VP-152MX2-M16 camera can be summarized by the following equation.

```
IC = IR / IF

IC: Level value of corrected image
IR: Level value of original image
IF: Level value of Flat Field data
```

In actual use conditions, generate a Flat Field correction data and then save the data into the non-volatile memory of the camera by following the procedure below.

- 1. Execute the Flat Field Data Generate parameter.
 - After executing the Flat Field Data Generate parameter, you must acquire one image to generate the scaled down Flat Field correction data.
- 2. Use the Flat Field Data Selector parameter to specify a location to save the generated Flat Field correction data.
- 3. Execute the Flat Field Data Save parameter to save the generated Flat Field data into the non-volatile memory. When the scaled down Flat Field data are used for correction, they are expanded and applied with a Bilinear Interpolation as shown in the Figure 9–8.
 - To disregard the generated Flat Field correction data and load the existing Flat Field correction data, execute the Flat Field Data Load parameter before executing the Flat Field Data Save parameter.
- 4. Set the Flat Field Correction parameter to On to apply the Flat Field data to the camera.

Caution!

- It is recommended that you enable the Defective Pixel Correction feature before executing the Flat Field Data Generate parameter.
- Before executing the Flat Field Data Generate parameter, you must set the camera as follows:

OffsetX, Y: 0

Width, Height: Maximum values

• After executing the Acquisition Start command, you need to operate the camera with the free-run mode or apply a trigger signal to acquire an image.

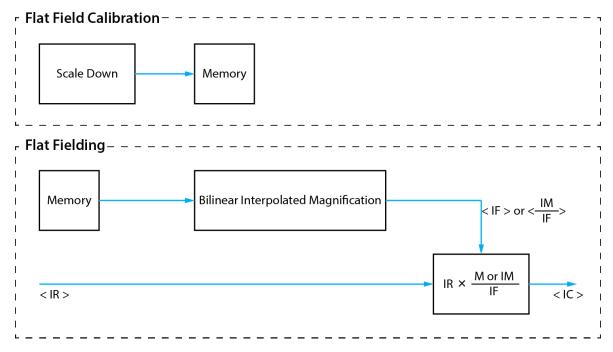


Figure 9-7 Generation and Application of Flat Field Data

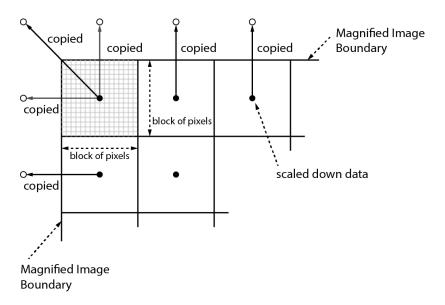
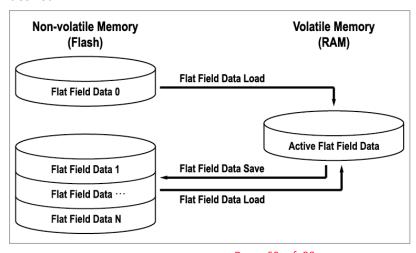


Figure 9-8 Bilinear Interpolated Magnification


The XMI	narameters	related to	Flat Field	Correction	are as follows.
	Daranicus		' i iat i itia	COLLCCTIOL	arc as rollows.

XML Parameters		Value	Description
FlatFieldControl	FlatFieldCorrection	Off	Disables the Flat Field Correction feature.
		On	Enables the Flat Field Correction feature.
	FlatFieldData Selector	Space0 ~ Space31	Selects a location to save Flat Field data to or load Flat Field data from. Space0~Space31:User defined location
	FlatFieldData Generate	-	Generates the Flat Field data.
	FlatFieldDataSave	-	Saves the generated Flat Field correction data in the non-volatile memory. The data generated by executing the Flat Field Data Generate parameter are saved in the volatile memory so that the data are lost if the camera is reset or if power is turned off. To use the data after the camera is powered on or reset, save them in the non-volatile memory.
	FlatFieldDataLoad	-	Loads the Flat Field data from the non-volatile memory into volatile memory.

Table 9-14 XML Parameters related to Flat Field Correction

9.10.1 Flat Field Data Selector

As mentioned above, the generated Flat Field correction data are stored in the camera's volatile memory and the data are lost if the camera is reset or powered off. To use the generated Flat Field correction data after the camera is powered on or reset, you need to save them in the camera's non-volatile memory. The VP-152MX2-M16 camera provides thirty-two reserved locations in the camera's non-volatile memory available for saving and loading the Flat Field correction data. You can use the Flat Field Data Selector parameter to select a location as desired.

Page 69 of 93

Figure 9-9 Flat Field Data Selector

Saving Flat Field Data

In order to save the active Flat Field data into a reserved location in the camera's Flash memory, follow the procedure below.

- 1. Use the Flat Field Data Selector parameter to specify a location to save the active Flat Field data.
- 2. Execute the Flat Field Data Save parameter to save the active Flat Field data to the selected location.

Loading Flat Field Data

If you saved Flat Field correction data into the camera's non-volatile memory, you could load the saved Flat Field correction data from the camera's non-volatile memory into the camera's active Flat Field data location.

- 1. Use the Flat Field Data Selector parameter to specify a reserved location whose Flat Field correction data will be loaded into the camera's active Flat Field data location.
- 2. Execute the Flat Field Data Load parameter to load the selected Flat Field correction data into the active Flat Field data location.

9.11 Digital I/O Control

The Control I/O receptacle of the camera can be operated in various modes.

The XML parameters related to Digital I/O Control are as follows.

XML Parameters		Value	Description
DigitallOControl	LineSelector	Line 1	Selects the number 4 pin of the camera's Control I/O receptacle as an output line.
	LineInverter	FALSE	Disables inversion on the output signal of the line.
		TRUE	Enables inversion on the output signal of the line.
	LineSource	Off	Disables the line output.
		Exposure Active	Outputs pulse signals indicating the current exposure time.
	Frame Active	Outputs pulse signals indicating a frame readout time.	
		UserOutput0	Outputs pulse signals set by User Output Value.
		Timer0 Active	Outputs user-defined Timer signals as pulse signals.

UserOutput	FALSE	Sets the bit state of the line to Low.
Value	TRUE	Sets the bit state of the line to High.
Debounce	0 ~ 1,000,000	Sets a Debounce Time in microseconds
Time		(Default: 0.5 μ s).

Table 9-15 XML Parameters related to Digital I/O Control

When you set the Line Source to User Output0, you can use the user setting values as output signals.

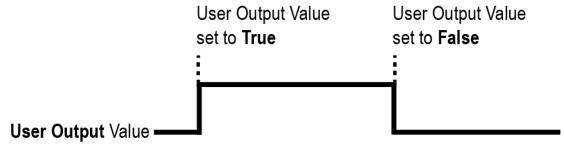


Figure 9-10 User Output

The camera can provide an Exposure Active output signal. The signal goes high when the exposure time for each frame acquisition begins and goes low when the exposure time ends as shown in the figure below. This signal can be used as a flash trigger and is also useful when you are operating a system where either the camera or the object being imaged is movable. Typically, you do not want the camera to move during exposure. You can monitor the Exposure Active signal to know when exposure is taking place and thus know when to avoid moving the camera.

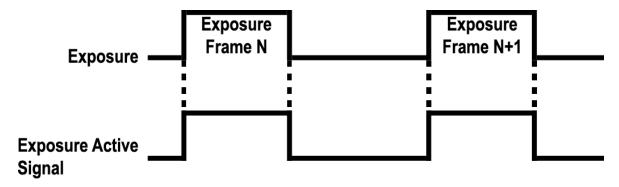


Figure 9-11 Exposure Active Signal

9.12 Debounce

The Debounce feature of the VP-152MX2-M16 cameras allows to supply only valid signals to the camera by discriminating between valid and invalid input signals. The Debounce Time parameter specifies the minimum time that an input signal must remain High or Low in order to be considered as a valid input signal. When you use the Debounce feature, be aware that there is a delay between the point where the valid input signal arrives and the point where the signal becomes effective. The duration of the delay is determined by the Debounce Time parameter setting value.

When you set the Debounce Time parameter, High and Low signals shorter than the setting value are considered invalid and ignored as shown in the figure below.

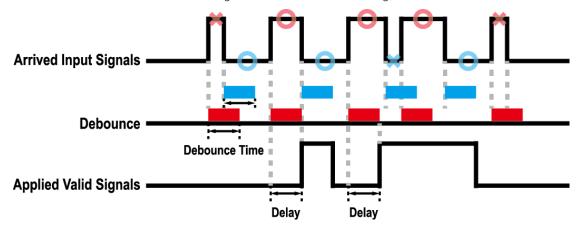


Figure 9-12 Debounce

The XML parameter related to Debounce Time is as follows.

XML Parameters	5	Value	Description
DigitallOControl	Debounce Time	0 – 1,000,000 μs	Sets a Debounce Time in microseconds (Default: 0.5 μ s).

Table 9-16 XML Parameter related to Debounce Time

9.13 Timer Control

When the Line Source parameter is set to TimerOActive, the camera can provide output signals by using the Timer. On the VP-152MX2-M16 camera, the Frame Active, Exposure Active event or external trigger signal is available as Timer source signal.

The XML parameters related to Timer are as follows.

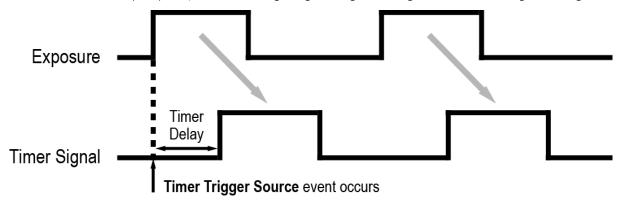

XML Paramet	XML Parameters		Description
CounterAnd TimerControl	TimerDuration	1 ~ 60,000,000 μs	Sets the duration of the Timer output signal to be used when Timer Trigger Activation is set to Rising/Falling Edge.
	TimerDelay	0 ~ 60,000,000 μs	Sets the delay time to be applied before starting the Timer.
	TimerReset	-	Resets the Timer and starts it again.
	TimerTrigger	Off	Disables the Timer trigger.
	\Source	ExposureActive	Sets the Timer to use the current exposure time as the source signal.
		FrameActive	Sets the Timer to use a frame readout time as the source signal.
		Line0	Sets the Timer to use the external trigger signal as the source signal.
	TimerTrigger Activation	RisingEdge	Specifies that a rising edge of the selected trigger signal will act as the Timer trigger.
		FallingEdge	Specifies that a falling edge of the selected trigger signal will act as the Timer trigger.
		LevelHigh	Specifies that the Timer output signal will be valid as long as the selected trigger signal is High.
		LevelLow	Specifies that the Timer output signal will be valid as long as the selected trigger signal is Low.

Table 9-17 XML Parameters related to Timer Control

For example, when the Timer Trigger Source is set to Exposure Active and the Timer Trigger Activation is set to Level High, the Timer will act as follows.

- 1. When the source signals set by the Timer Trigger Source parameter are applied, the Timer will start operations.
- 2. The delay set by the Timer Delay parameter begins to expire.
- 3. When the delay expires, the Timer signal goes high as long as the source signal is high.

^{*} Timer Trigger Activation is set to Level High.

Figure 9-13 Timer Signal

9.14 Cooling Control

A fan is installed on the rear panel of the camera to radiate heat. You can set the fan to turn on or off. You can also set the fan to turn on when a specified internal temperature is reached.

The XML parameters related to Cooling Control are as follows.

XML Parameters		Value	Description
CoolingControl	TargetTemperature	-10°C ~ 80°C	Sets the temperature to operate the fan when the FanOperationMode parameter is set to Temperature.
	FanOperationMode	Off	Turns off the fan.
		On	Turns on the fan.
		Temperature	Turns on the fan when the internal temperature exceeds the value set in the Target Temperature parameter.
	FanSpeed	-	Displays the current Fan RPM.
	PeltierOperationMode	Off	Turns off the Thermoelectric Peltier.
		On	Turns on the Thermoelectric Peltier when the internal temperature exceeds the value set in the Target Temperature parameter.

Table 9-18 XML Parameters related to Cooling Control

9.15 Temperature Monitor

The camera has an embedded sensor chip to monitor the internal temperature.

The XML parameters related to Device Temperature are as follows.

XML Parameters		Value	Description
DeviceControl	DeviceTemperatureSelector	Mainboard	Sets a temperature measuring spot to the mainboard.
	DeviceTemperature	-	Displays device temperature in Celsius.

Table 9-19 XML Parameters related to Device Temperature

9.16 Status LED

A LED is installed on the rear panel of the camera to inform the operation status of the camera.

LED status and corresponding camera status are as follows:

Status LED	Description
Steady Red	The camera is not initialized.
Slow Flashing Red	A CXP Link is not configured.
Fast Flashing Orange	The camera is checking a CXP Link configuration.
Steady Green	A CXP Link is configured.
Fast Flashing Green	The camera is transmitting image data.

Status LED	Description
Steady Red	The camera is not initialized.
Fast Flashing Green	The camera is transmitting image data.

Table 9-20 Status LED

9.17 Test Pattern

To check whether the camera operates normally or not, it can be set to output test patterns generated in the camera, instead of image data from the image sensor. Four types of test patterns are available; images with different values in horizontal direction (Grey Horizontal Ramp), images with different values in diagonal direction (Grey Diagonal Ramp), moving images with different values in diagonal direction (Grey Diagonal Ramp Moving) and images with different values in horizontal direction output from the image sensor (Sensor Specific).

The XML parameter related to Test Pattern is as follows.

XML Parameter		Value	Description	
ImageFormatControl	TestPattern	Off	Disables the Test Pattern feature.	
		GreyHorizontalRamp	Sets to Grey Horizontal Ramp.	
		GreyDiagonalRamp	Sets to Grey Diagonal Ramp.	
	GreyDiagonalRamp SensorSpecific	GreyDiagonalRampMoving	Sets to Grey Diagonal Ramp Moving.	
		SensorSpecific	Sets to the Test Pattern generated by the image sensor.	

Table 9-21 XML Parameter related to Test Pattern

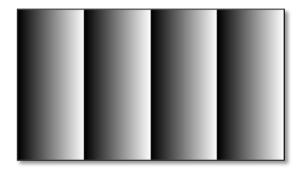


Figure 9-14 Grey Horizontal Ramp

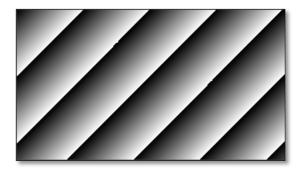


Figure 9-15 Grey Diagonal Ramp

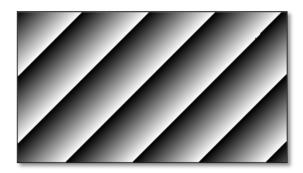


Figure 9-16 Grey Diagonal Ramp Moving

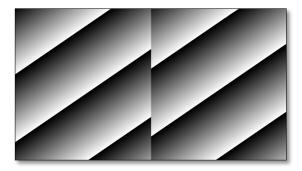


Figure 9-17 Sensor Specific

Caution!

The test pattern may look different because the region of the test pattern may vary depending on the camera's resolution.

9.18 Reverse X

The Reverse X feature lets you flip images horizontally. This feature is available in almost all of operation modes of the camera, except for the Test Image mode.

XML Parameter		Value	Description
ImageFormatControl	nageFormatControl ReverseX		Disables the Reverse X feature.
		TRUE	Flips images horizontally.

Table 9-22 XML Parameter related to Reverse X

Figure 9-18 Original Image

Figure 9-19 Reverse X Image

9.19 Reverse Y

The Reverse Y feature lets you flip images vertically. This feature is available in all operation modes of the camera. The XML parameter related to Reverse Y is as follows.

XML Parameters		Value	Description
ImageFormatControl ReverseY		FALSE	Disables the Reverse Y feature.
		TRUE	Flips images vertically.

Table 9-23 XML Parameter related to Reverse Y

Figure 9-20 Original Image

Figure 9-21 Reverse Y Image

Caution!

When you use the Reverse Y feature, you must generate the camera's correction data (Defective Pixel Map, DSNU and PRNU) again.

9.20 Device Link Throughput Limit

The Device Link Throughput Limit feature allows you to limit the maximum available bandwidth for data transmission to your computer.

The XML parameter related to Device Link Throughput Limit is as follows.

XML Parameters		Description
DeviceControl	DeviceLinkThroughputLimit	Limits the maximum available bandwidth (Bps).

Table 9-24 XML Parameter related to Device Link Throughput Limit

Caution!

To ensure good image quality, we recommend that you set the Device Link Throughput Limit parameter to 3,000 or above. Otherwise, the image quality can decrease.

9.21 Device User ID

You can input user-defined information up to 16 bytes.

The XML parameter related to Device User ID is as follows.

XML Parameter		Description
DeviceControl	DeviceUserID	Input user-defined information (16 bytes).

Table 9-25 XML Parameter related to Device User ID

9.22 Device Reset

Resets the camera physically to power off and on.

The XML parameter related to Device Reset is as follows.

XML Paramete	r	Description
DeviceControl	Device Reset	Resets the camera physically.

9.23 Field Upgrade

The camera provides a feature to upgrade the Firmware and FPGA logic through the Camera Link interface without disassembling the camera in the field. Refer to Appendix A for more details about how to upgrade.

9.24 User Set Control

You can save the current camera settings to the camera's internal Flash memory. You can also load the camera settings from the camera's internal Flash memory. The camera provides two setups to save and three setups to load settings.

The XML parameters related to User Set Control are as follows.

XML Parameters		Value	Description
UserSetControl	UserSetSelector	Default	Selects the Factory Default settings.
		UserSet1	Selects the UserSet1 settings.
		UserSet2	Selects the UserSet2 settings.
	UserSetLoad	-	Loads the User Set specified by User Set Selector to the camera.
	UserSetSave	-	Saves the current settings to the User Set specified by User Set Selector. The Default is a Factory Default Settings and allowed to load only.
	UserSetDefault	Default	Applies the Factory Default settings when reset.
		UserSet1	Applies the UserSet1 when reset.
		UserSet2	Applies the UserSet2 when reset.

Table 9-27 XML Parameters related to User Set Control

The camera settings stored in the Default can be loaded into the camera's workspace but cannot be changed. The settings set in the workspace will be lost if the camera is reset or powered off. To use the current setting values in the workspace after a reset, you must save the settings to one of the user spaces.

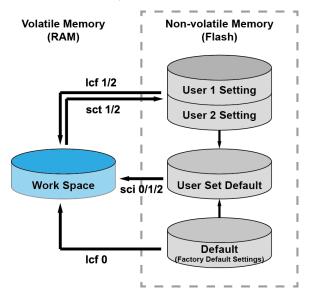


Figure 9-22 User Set Control

9.25 Sequencer Control

The Sequencer Control provided by the VP-152MX2-M16 cameras allows you to apply different sets of parameter settings, called 'Sequencer Set', to a sequence of image acquisitions. As the camera acquires images, it applies one Sequencer Set after the other. This allows the camera to respond quickly to changing imaging requirements. For example, changes in illumination conditions influence the imaging requirements.

With the User Set Control feature, you can save user defined Sequencer Sets in the camera's non-volatile memory. Then after the camera is powered on or reset, the Sequencer Sets are available according to the User Set Default parameter. Each Sequencer Set is identified by an index number ranging from 0 to 31. Accordingly, you can define up to 32 different Sequencer Sets. On the VP-152MX2-M16 cameras, only the Flat Field correction data can be configured for Sequencer Sets.

The XML parameters related to Sequencer Sets are as follows.

XML Parameters		Value	Description
SequencerControl	SequencerMode	Off	Disables the Sequencer.
		On	Enables the Sequencer.
	SequencerConfigurationMode	Off	Disables the Sequencer Configuration Mode.
		On	Enables the Sequencer Configuration Mode.
	SequencerSetSelector	0 ~ 31	Selects an index number of a Sequencer Set to be configured.
	SequencerSetActive	-	Displays the index number (0 \sim 31) of the Sequencer Set that is currently active.
	SequencerSetCount	1 ~ 32	Sets the number of Sequencer Sets to be applied.
	SequencerReset	-	Returns to Sequencer Set 0.

Table 9-28 XML Parameters related to Sequencer Control

Caution!

To apply Sequencer Sets, you must set the Trigger Mode parameter to On.

Use Case - Applying Four Different Flat Field Correction Data to Sequencer Sets

For example, assume that four different Flat Field correction data optimized for White, Green, Red and Blue pixels are applied to four different Sequencer Sets to inspect LCD panels.

- 1. Set the Sequencer Mode parameter to Off.
- 2. Set the Sequencer Configuration Mode parameter to On.
- *3.* Set the Sequencer Set Selector parameter to 0 and set the Flat Field Data Selector parameter to 0. Then, set the Sequencer Set Selector parameter to 1, 2 and 3, and then set the Flat Field Data Selector parameter to 1, 2 and 3 respectively.
- 4. Set the Sequencer Set Count parameter to 4.
- 5. Set the Sequencer Configuration Mode parameter to Off, and then set the Sequencer Mode parameter to On.

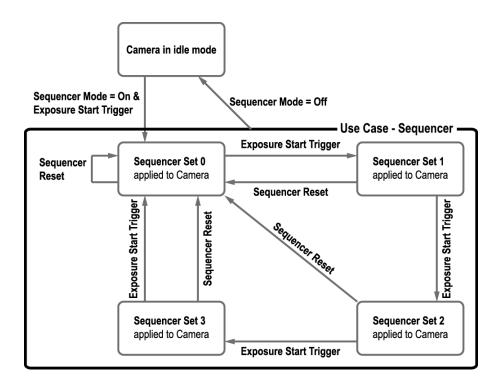
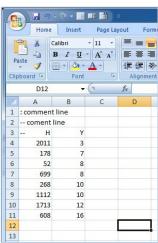


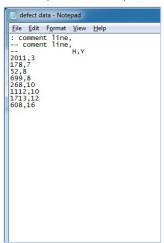
Figure 9-23 Sequencer Diagram (Use Case)

Note:

- You can save the user defined Sequencer Sets in the camera's non-volatile memory by using the User Set Control feature. For more information, refer to 9.24 User Set Control.
- Executing the Sequencer Reset parameter allows to return to the Sequencer Set 0 status at any time while cycling through the Sequencer.

Chapter 10. Troubleshooting

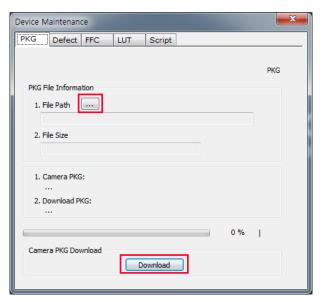

When you have a problem with a Vieworks camera, please check the followings:

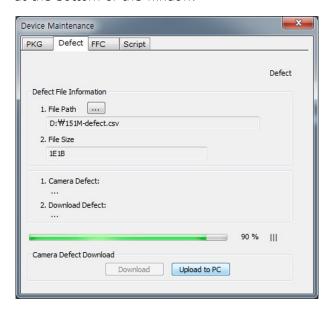

- If no image is displayed on your computer,
 - Ensure that all cable connections are secure.
 - Ensure that the power supply is properly connected.
 - Ensure that trigger signals are applied correctly when you operate the camera with trigger signals.
- If images are not clear,
 - Ensure the camera lens or glass is clean.
 - Check the lens aperture is adjusted properly.
- If images are dark,
 - Ensure the camera lens is not blocked.
 - Check the exposure time is set properly.
- If you identify abnormal operation or overheating sign,
 - Ensure the power supply is properly connected.
 - Stop using the camera when you notice smoke or abnormal overheating.
- If the Trigger Mode is not working correctly,
 - Ensure that the CC1 settings on the frame grabber are configured correctly when you use CC1 triggering.
 - Ensure that cable connections are secure when you use external triggering.
- If there is a communication failure between the camera and user's computer,
 - Ensure that the Camera Link cable connections are secure.
 - Ensure that you have configured a frame grabber in your computer and the camera is connected to the frame grabber correctly.

Appendix A. Defective Pixel Map Download

1. Create the Defective Pixel Map data in Microsoft Excel format as shown in the left picture below and save as a CSV file (*.csv). The picture in the right shows the created Excel file opened in Notepad. The following rules need to be applied when creating the file.

- Lines beginning with ':' or '—' are treated as notes.
- You must enter the horizontal value first and then the vertical value for coordinates of each defect pixel.
- Coordinate values for each pixel can be placed in any order.


2. Run Vieworks Imaging Solution 7.X and click the Configure button to display the window as shown below. Select the Defect tab, click the File Path item, search and select the defective pixel map (*.csv), and then click the Download button.


Appendix B. Field Upgrade

You can upgrade the MCU, FPGA and XML file of the camera by following the procedure below.

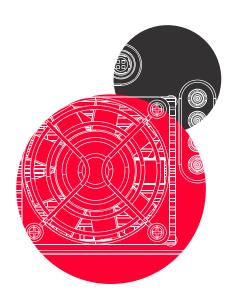
- 1. Run Vieworks Imaging Solution 7.X and click the Configure button to display the window as shown below.
- 2. Select the PKG tab, click the button next to File Path, search and select the MCU, FPGA or XML upgrade file, and then click the Download button.

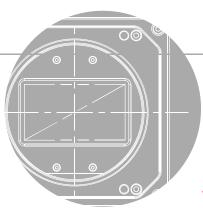
3. The camera begins downloading the upgrade file and the downloading status is displayed at the bottom of the window.

Appendix C. Index

4 4-pin connector	camera's pixel formats camera's temperature, parameters	. 75 . 30
6 6-pin connector28	Configurator	. 84
A	D	
acquisition control3	defect pixel	. 62
Acquisition Mode parameter32	diagram	. 22
Acquisition Start command32	dimension	. 24
Acquisition Stop command32	DSNU data, generation	. 63
applicatione	F	
В	Flat Field Correction data, generation	. 67
back panel26	Flat Filed data into a sequencer	. 84
block diagram22	Free-run	. 35
С	G	
camera ON&OFF 80	gain value, setting	. 61

generating data of Flat Field correction67	0	
н	offset to pixel	61
hardware trigger signal41	offset value, setting	61
Hirose28, 29	Р	
Hirose 4-pin connector29		
Hirose 6-pin connector	pixel formats	60
	preface	3, 6
I	PRNU	65
inputting information of user's choice80	product	6
K	R	
key features20	reset physically	80
L	S	
LED status	schematic diagram	30
	Sequencer Set	83
М	specification	21
main features20	strobe output	30
mechanical dimension24	т	
Multi-ROI, determination56		
	Target Level AUTO	66
	tilt settings	25


trigger input	30	GreyHorizontalRamp	76
trigger input		Height	51
		HeightMax	51
Trigger Width mode	44	ImageFormatControl	51, 60, 78
		Line 0	70
		Line 1	70
		LineActive	70
V		LineInverter	70
•		LineSelector	70
		LineSource	70
		Mainboard	
VIS installation	25	MultiROIControl	
		MultiROIHeight	
VP-152MX2-M16 specification	21	MultiROIMode	
VI 102MM2 WITO Specification	21	MultiROIOffsetX	
		MultiROIOffsetY	
		MultiROISelector	
		MultiROIStatus	
X		MultiROIValid	
		MultiROIWidth	
		OffsetX	
XML parameter		OffsetY	
AND parameter		PixelFormat	
Anada a Cantad	04		
Analog Control		PRNU Generate	
BinningHorizontal		PRNU Selector	
BinningHorizontalMode		PRNULoad	
BinningSelector		PRNUMode	
BinningVertical		PRNUSave	
BinningVerticalMode		PRNUTargetLevel	
BlackLevel		ReverseX	
BlackLevelSelector	61	ReverseY	
CoaXPress		SensorHeight	
CounterAndTimeControl	73	SensorSpecific	
CxpLinkConfiguration		SensorWidth	
CxpLinkConfigurationPreferred	59	SequencerConfigurationMode	
Debounce Time	72	SequencerControl	
Device Reset	80	SequencerMode	
DeviceControl	80	SequencerReset	
DeviceLinkThroughputLimit	80	SequencerSetActive	83
DeviceTemperature	75	SequencerSetCount	83
DeviceTemperatureSelector	75	SequencerSetSelector	83
DeviceUserID	80	TargetLevelAUTO	65
DigitallOControl	70, 72	TestPattern	76
DSNUGenerate	63	Timer0Active	70
DSNULoad	63	TimerDelay	73
DSNUSave	63	TimerDuration	73
Flat Field Data Selector	69	TimerReset	73
FlatFieldControl	69	TimerSelector	73
FlatFieldCorrection	69	TimerTriggerActivation	73
FlatFieldDataGenerate		TimerTriggerSource	
FlatFieldDataLoad		UserDefault	
FlatFieldDataSave		UserOutput0	
FlatFieldDataSelector		UserOutputValue	
FrameActive		UserSet1	
Gain		UserSet2	
GainSelector		UserSetControl	
GreyDiagonalRamp		UserSetSeve	
GreyDiagonalRampMoving	/ 0	UserSetSave	81


VP Series User Manual

UserSetSelector	.81	WidthMax51
Width	.51	

Vieworks Co., Ltd.

41-3, Burim-ro, 170beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do 14055 Republic of Korea

Tel: +82-70-7011-6161 Fax: +82-31-386-8631

http://vision.vieworks.com

vision@vieworks.com