VP series User Manual

개정 이력

버전	날짜	설명
1.0	2021-03-31	최초 릴리스

목차

1	Ĩ	주의사항	.6
2	5	보증범위	.7
3	Y	사용자 안내문	.7
4	쟛	에품 구성	.8
5	쟛	에풍 규격	.9
-	5.1	·····································	. 9
	5.2	Specification	10
	5.3	Camera Block Diagram	12
	5.4	스펙트럼 응답 특성	13
	5.	5.4.1 흑백 카메라 스펙트럼 응답 특성	13
	5.	5.4.2 컬러 카메라 스펙트럼 응답 특성	14
	5.5	Mechanical Specification	15
	5.	5.5.1 Camera Mounting 및 Heat Dissipation	16
6	Ŧ	가메라 연결 방법	17
	6.1	센서 중심 조정에 대한 주의사항	18
	6.2	중심대비 주변상 흐림에 대한 주의사항	18
	6.3	카메라 제어	18
7	С	Camera Interface	19
	7.1	General Description	19
	7.2	Camera Link SDR 커넥터	19
	7.3	전원 입력 단자	23
	7.4	컨트롤 입/출력 단자	24
	7.5	Trigger Input Circuit	25
	7.6	Strobe Output Circuit	25
8	A	Acquisition Control	26
	8.1	개요	26
	8.2	Acquisition Start/Stop 명령 및 Acquisition Mode	29

8.3 Expo	sure Start 트리거	31
8.3.1	Trigger Mode	31
8.3.2	Software 트리거 신호 사용하기	35
8.3.3	CC1 트리거 신호 사용하기	36
8.3.4	External 트리거 신호 사용하기	37
8.3.5	Exposure Mode	39
8.3.6	Short Exposure Mode	41
8.3.7	Exposure Offset	42
8.4 노출	시간 설정	43
8.5 Expo	sure와 Readout Overlap	44
8.6 Globa	al Shutter	46
8.7 허용	가능한 최대 Frame Rate	47
8.7.1	허용 가능한 최대 Frame Rate 증가하기	48
9 Camer	a Features	49
9.1 Imag	e Region of Interest	49
9.2 Multi-	ROI	52
9.3 Binni	ng (Monochrome Only)	55
9.4 Fram	e Averaging	57
9.5 Pixel	Format	58
9.6 Devic	e Tap Geometry	59
9.7 Came	era Link Clock	60
9.8 Data	ROI(컬러 카메라)	61
9.9 White	e Balance (컬러 카메라)	62
9.9.1	Balance White Auto	62
9.10 Gain	및 Black Level	63
9.11 Defe	ctive Pixel Correction	64
9.11.1	보정 방법	64
9.12 Photo	Response Non-uniformity Correction	65
9.12.1	사용자 PRNU 보정 값 생성 및 저장	66
9.13 Flat F	Field Correction	67
9.13.1	Flat Field Data Selector	71
9.14 Digita	II I/O Control	72
9.14.1	Debounce	74
9.15 Time	Control	75
9.16 Cooli	ng Control	77
9.17 Temp	erature Monitor	78

Appendix B	Field Upgrade	107
Appendix A	Defective Pixel Map Download	105
11 제품 동직	·이상 확인 및 조치	103
10.4 Comma	าd List	
10.3.1 Co	ənfigurator 시작하기	91
10.3 Configu	ator	
10.2 파라미티	실제 적용 시간	
10.1 시리얼	통신	
10 Camera (configuration	90
9.26 Sequen	er Control	87
9.25 User Se	t Control	85
9.24 Field Up	grade	
9.23 Device F	₹eset	
9.22 Device l	Jser ID	
9.21 Reverse	Υ	
9.20 Reverse	X	
9.19 Test Pat	tern	
9.18 Status L	ED	

1 주의사항

일반 주의사항

	•	본 제품을 떨어트리거나, 임의대로 분해하거나 개조하지 마십시오. 기기의 훼손이나
		감전사고의 위험이 있습니다.
	•	사용 안전을 위하여 어린이의 손이나 애완동물이 접근할 수 있는 곳에 보관하지
\wedge		마십시오.
CAUTION	•	만약 부주의로 인해 액체나 이물질이 본 기기 내부로 들어갔을 경우 본 제품을
		사용하지 마시고 즉시 전원을 끈 후, 판매처에 연락을 취해 협조를 구하십시오.
	•	젖은 손으로 본 제품을 조작하지 마십시오. 감전 사고의 우려가 있습니다.
	•	카메라의 온도가 <u>5.2절 Specification</u> 의 온도 범위를 벗어나지 않는지 주의하십시오.
		극한 기온으로 인해 제품이 손상될 수 있습니다.

설치 시 주의사항

	•	먼지와 모래가 많거나 더러운 장소, 혹은 에어컨 및 난로 가까이에 본 제품을 두지
CAUTION		마십시오. 제품이 손상될 수 있습니다.
	•	진동, 열, 습기, 먼지, 폭발 및 부식을 발생시키는 연무 또는 가스가 있는 극한
		환경에서 설치 및 운용하지 마십시오.
	•	카메라에 진동 또는 충격을 가하지 마십시오. 제품이 손상될 수 있습니다.
	•	제품에 강한 조명이 직접 닿지 않도록 하십시오. 영상 센서가 손상될 수 있습니다.
	•	조명이 불안정한 곳에 제품을 설치하지 마십시오. 카메라에서 생성하는 영상 품질에
		영향을 줄 수 있습니다.
	•	제품 표면을 닦을 때, 용액이나 희석제를 사용하지 마십시오. 제품이 손상될 수
		있습니다.
	1	

전원 공급 주의사항

	•	잘못된 전원을 공급하면 카메라가 손상될 수 있습니다. 카메라의 전원 전압 입력
CAUTION		범위를 초과하거나 미달될 경우 카메라가 손상되거나 오작동할 수 있습니다. 카메라의
		전압 입력 범위는 <u>5.2절 Specification</u> 를 참조하십시오(※제조사 ㈜뷰웍스는 어댑터를
		제공하지 않음).
	•	카메라의 전원 배선 연결 전에 카메라의 입력전원이 OFF 되어 있는 것을 확인한
		후에 작업해 주십시오. 카메라 손상의 원인이 될 수 있습니다.

2 보증범위

다음과 같은 경우 보증범위에서 제외됩니다.

- 인정되지 않는 제조자, Agent, 기술자에 의한 서비스와 개조로 인한 장비의 고장 등에 대해 제조사는 책임을 지지 않습니다.
- 운영자의 과실로 인한 자료의 분실 및 훼손에 대해 제조사는 책임을 지지 않습니다.
- 사용자가 사용 목적 이외의 용도로 사용하거나 무리한 사용 또는 과실로 인한 파손 및 고장이 발생한 경우
- 잘못된 전원사용, 사용 설명서에 명시된 사용 조건에서 사용하지 않을 경우
- 벼락, 지진, 화재, 홍수 등으로 인한 자연재해
- 허가 없이 장비의 부품 및 소프트웨어를 교체하거나 개조하여 문제가 발생한 경우

제품 관련 기술 지원 및 서비스가 필요한 경우 판매처나 제조사로 문의하십시오. 보증기간은 제품 판매 시 보증서에 명기되어 있는 기간으로 하고, 장비가 출고된 이후부터 적용됩니다.

3 사용자 안내문

용도 구분	사용자 안내문			
A급 기기 (업무용 방송통신기기)	이 기기는 업무용(A급)으로 전자파 적합 등록을 한 기기이오니 판매자 또는 사용자는 이점을 주의하시기 바라며, 가정 외의 지역에서 사용하는 것을 목적으로 합니다.			

4 제품 구성

VP-31MC-26 H <F-mount>

5 제품 규격

5.1 개요

VP-31MC-26 H 카메라는 산업 현장에서 입증된 VP 시리즈에 새로 추가된 31 메가픽셀 해상도의 Camera Link 카메라로 Sony Semiconductor Solutions Corporation 의 최신 CMOS 영상 센서 기술(IMX342)을 채용했습니다. VP-31MC-26 H 카메라는 6464 × 4852 해상도에서 최대 26.2 fps 의 속도로 영상을 획득할 수 있습니다. 이 카메라에는 의료 분야에서 요구되고, 사용하는 TEC(Thermoelectric Peltier Cooled) 냉각 기술을 적용했습니다. TEC 는 센서의 온도를 주위 온도보다 대략 15±2℃만큼 냉각합니다. 이러한 기술로 VP-31MC 카메라는 안정된 운용 조건을 제공하고, 장시간 노출이 가능하여 카메라의 감도를 향상할 수 있습니다. 고속 및 고해상도에서 안정된 성능을 제공하는 VP-31MC-26 H 카메라는 FPD, PCB 및 반도체 검사 등의 애플리케이션에 적합합니다.

주요 특징

- High Speed 31 Megapixel CMOS Image Sensor
- Thermoelectric Peltier Cooling about 15±2°C below ambient temperature
- Minimizing the number of hot pixels with TEC
- Electronic Exposure Time Control (Global Shutter)
- Output Pixel Format: 8 / 10 / 12 bit
- Line Output
- Defective Pixel Correction
- Frame Averaging
- Camera Link Base / Medium / Full / 10 Tap
- Camera Link Tap Geometry: 2 Tap, 4 Tap, 8 Tap, 10 Tap
- Camera Link Clock Frequency Selector
- Gain / Black Level Control
- Test Image
- Temperature Monitor
- Field Upgrade
- PRNU Correction
- Flat Field Correction with Sequencer Control
- Hot Pixel Correction
- GenICam Compatible XML based Control

5.2 Specification

VP-31MC 카메라의 사양은 다음과 같습니다.

Specificatio	ns	VP-31MC-M/C 26 H		
Active Image (F	l×V)	6464 × 4852		
Sensor		Sony IMX342		
Sensor Typ	e	Global Shutter CMOS Image Sensor		
Optical Format (D	iagonal)	APS-C (27.9 mm)		
Pixel size		$3.45~\mu\text{m}~ imes~3.45~\mu\text{m}$		
Interface		Camera Link Base / Medium / Full / 10 Tap		
Electronic Shu	utter	Global Shutter		
	2 Тар	5.3 fps		
May Frame Data	4 Tap	10.6 fps		
Max. Frame Rate	8 Тар	21.1 fps		
	10 Тар	26.2 fps		
Pixel Data Format	Mono	Mono 8 / Mono 10 / Mono 12		
	Color	RG Bayer 8 / RG Bayer 10 / RG Bayer 12		
Camera Link Pixe	el Clock	65 MHz / 85 MHz		
Exposure Tir	ne	2.4 μs ~ 60 s		
Partial Scan (Max.	Speed)	1442.3 fps at 4 Lines		
Binning	Sensor	×1, ×2 (Horizontal and Vertical Dependent)		
Black Level Co	ontrol	0 ~ 255 LSB at 12 bit		
Gain Contro	bl	1× ~ 32×		
Trigger Synchron	ization	Free-Run, Hardware Trigger, Software Trigger, CC1, User Output0		
External Trigg	ger	3.3 V ~ 24.0 V, 10 mA, Logical level input, Optically isolated		
Software Trig	ger	Asynchronous, Programmable via Camera API		
Dynamic Rar	ige	72 dB		
Lens Moun	t	F-mount		
Cooling Meth	iod	Thermoelectric Peltier Cooling		
Cooling Perform	nance	$15\pm2^{\circ}$ C below ambient temperature – Standard cooling with a fan		

Table 5.1 VP-31MC-26 H 사양(계속)

Specifications		VP-31MC-M/C 26 H	
Davian	External	11 ~ 24 V DC	
Power	Dissipation	Typ. 30.0 W	
Environmental		Operating: 0 ∼ 40°C, Storage: -40°C ∼ 70°C	
Dimension / Weight		90.0 mm × 90.0 mm × 129.3 mm, 1256.1 g (with F-mount)	
Configuration SW		Configurator / Vieworks Imaging Solution 7.X	

Table 5.2 VP-31MC-26 H 사양

5.3 Camera Block Diagram

Figure 5.1 Camera Block Diagram

카메라의 모든 컨트롤과 데이터 처리는 하나의 FPGA 칩 내에서 이루어집니다. FPGA 내부는 크게 Softcore 형태의 32 비트 RISC 마이크로프로세서와 프로세싱 & 컨트롤 로직으로 이루어져 있습니다. 마이크로프로세서는 Camera Link 인터페이스를 통하여 사용자로부터 명령을 받고 이를 처리합니다. 프로세싱 & 컨트롤 로직은 CMOS 센서에서 전달된 영상 데이터를 처리하여 Camera Link 인터페이스로 내보내고, 시간에 민감한 트리거 입력과 출력 신호의 컨트롤을 담당합니다. 이 밖에, FPGA 의 외부에는 마이크로 컨트롤러의 작동을 위한 Flash와 영상 처리를 위한 DDR3 이 장착되어 있습니다.

5.4 스펙트럼 응답 특성

5.4.1 흑백 카메라 스펙트럼 응답 특성

다음 그래프는 VP-31MC-26 H 흑백 카메라에 대한 스펙트럼 응답 특성을 보여줍니다.

IMX342 Monochrome

Figure 5.2 VP-31MC-M26 H Spectral Response

5.4.2 컬러 카메라 스펙트럼 응답 특성

다음 그래프는 VP-31MC-26 H 컬러 카메라에 대한 스펙트럼 응답 특성을 보여줍니다.

5.5 Mechanical Specification

다음 도면은 밀리미터 단위의 카메라 치수를 나타냅니다.

Figure 5.4 VP-31MC-26 H F-mount Mechanical Dimension

5.5.1 Camera Mounting 및 Heat Dissipation

진동 방지를 위한 카메라 거치 권장사항

카메라의 거치 상태가 열악할 경우 카메라에 장착된 팬 진동이 증폭되어 영상이 흐릿해질 수 있습니다. 팬에 의해 발생하는 진동을 예방하거나 줄이려면 다음 사항을 준수하십시오.

- 카메라의 전면 또는 측면을 4개 이상의 나사를 사용하여 고정하십시오.
- 카메라와 시스템 접촉면 사이에 이물이 유입되지 않도록 주의하십시오.
- 카메라의 무게 중심과 시스템의 무게 중심을 가능한 한 근접하게 유지하십시오.
- 렌즈의 크기나 무게가 카메라보다 크거나 무거운 경우에는 적절한 지지대를 제작하여 렌즈를 거치하십시오.
- 팬 내부에 이물이 유입되지 않도록 주의하십시오. 팬 날개가 손상될 수 있습니다.

효율적인 방열을 위한 카메라 거치 권장사항

- 팬의 공기 입출구를 막지 않도록 주의하십시오.
- 팬을 사용할 수 없는 경우 방열판 주위에 충분한 공간을 확보하십시오. 자연 대류를 통해서 손쉽게 방열판으로 열을 방산할 수 있습니다.
- 팬을 사용할 수 없는 경우 카메라에서 발생한 열이 적절하게 방산될 수 있도록 카메라를 열전도율이 높은 금속(예: 알루미늄) 구조물에 거치하십시오.
- 카메라의 Front-Block 30% 이상이 접촉되도록 거치하십시오.

6 카메라 연결 방법

다음 설명은 사용자의 PC에 Camera Link Frame Grabber(이하 'CL Frame Grabber)와 관련 소프트웨어가 설치되어 있다고 가정합니다. 자세한 내용은 CL Frame Grabber 사용 설명서를 참조하십시오. 다음 절차에 따라 사용자 PC에 카메라를 연결합니다.

- 1. 카메라와 전원 공급 장치가 분리되어 있는지, PC 의 전원이 꺼져 있는지 확인하십시오.
- 2. Camera Link 케이블의 한쪽 끝을 카메라의 Camera Link1 커넥터에 꽂고 다른 끝은 CL Frame Grabber 의 Base 커넥터에 연결합니다.
- 3. 다른 Camera Link 케이블의 한쪽 끝을 카메라의 Camera Link2 커넥터에 꽂고 다른 끝은 CL Frame Grabber 의 Medium/Full 커넥터에 연결합니다.
- 4. 전원 어댑터를 카메라의 전원 입력 단자에 연결합니다.
- 5. 전원 어댑터의 플러그를 전기 콘센트에 꽂습니다.
- 6. 모든 케이블이 제대로 연결되었는지 확인합니다.

Camera Link Medium / Full / 10 Tap Configuration 사용 시 주의사항

VP-31MC-26 H 카메라는 Camera Link Base/Medium/Full/10 Tap Configuration 을 지원합니다. Camera Link Medium, Full 또는 10 Tap Configuration 으로 카메라를 사용하려면 두 개의 Camera Link 케이블을 사용하여 카메라와 CL Frame Grabber 를 연결해야 합니다. 이때, 카메라의 Camera Link1 커넥터는 CL Frame Grabber 의 Base Configuration 용 커넥터에 연결하고, Camera Link2 커넥터는 CL Frame Grabber 의 Medium/Full Configuration 용 커넥터에 연결해야 합니다.

6.1 센서 중심 조정에 대한 주의사항

- 출하 시 중심이 맞춰진 상태이기 때문에 따로 조정이 필요 없습니다.
- 부득이하게 조정이 필요한 경우에는 제조사 또는 판매처에 문의하십시오.

6.2 중심대비 주변상 흐림에 대한 주의사항

- 출하 시 Tilt 조정이 되어 있기 때문에 따로 조정이 필요 없습니다.
- 부득이하게 조정이 필요한 경우에는 제조사 또는 판매처에 문의하십시오.

6.3 카메라 제어

- Configurator.exe 파일을 실행하여 카메라를 제어할 수 있습니다.
- 최신 Configurator 를 <u>http://www.vieworks.com</u>에서 다운로드할 수 있습니다.
- 사용하는 CL Frame Grabber 사용 설명서를 참조하십시오.

7 Camera Interface

7.1 General Description

카메라의 후면부에는 4 종류의 커넥터와 상태 표시 LED 가 있으며 각각의 기능은 다음과 같습니다.

- 1) Status LED:
- ② 6 핀 전원 입력 단자:
- ③ 4 핀 컨트롤 입/출력 단자:

전원 상태 및 작동 모드 표시 카메라 전원 입력 카메라의 입력 및 출력 라인으로 설정 비디오 데이터 전송 비디오 데이터 전송 및 카메라 제어

• ⑤ 26 핀 SDR 커넥터 1 (Camera Link Base):

Figure 7.1 VP-31MC-26 H 뒷면 패널

7.2 Camera Link SDR 커넥터

Figure 7.2 Camera Link 커넥터

PAIR List	IR List Pin S		Туре	Description
	1	Ground	Ground	Cable Shield
PAIR U	14	Ground	Ground	Cable Shield
	2	-X0	LVDS - Out	Camera Link Transmitter
PAIR	15	+X0	LVDS - Out	Camera Link Transmitter
	3	-X1	LVDS - Out	Camera Link Transmitter
PAIR 2	16	+X1	LVDS - Out	Camera Link Transmitter
	4	-X2	LVDS - Out	Camera Link Transmitter
PAIR 3	17	+X2	LVDS - Out	Camera Link Transmitter
	5	-XCLK	LVDS - Out	Camera Link Transmitter
PAIR 4	18	+XCLK	LVDS - Out	Camera Link Transmitter
	6	-X3	LVDS - Out	Camera Link Transmitter
PAIR 5	19	+X3	LVDS - Out	Camera Link Transmitter
	7	+ SerTC	LVDS - In	Serial Data Receiver
FAIR 0	20	- SerTC	LVDS - In	Serial Data Receiver
PAIR 7	8	- SerTFG	LVDS - Out	Serial Data Transmitter
	21	+ SerTFG	LVDS - Out	Serial Data Transmitter
	9	- CC 1	LVDS - In	Software External Trigger
PAIR 0	22	+ CC 1	LVDS - In	Software External Trigger
	10	N/C	N/C	N/C
PAIR 9	23	N/C	N/C	N/C
	11	N/C	N/C	N/C
FAIR IU	24	N/C	N/C	N/C
	12	N/C	N/C	N/C
	25	N/C	N/C	N/C
	13	Ground	Ground	Cable Shield
PAIR 12	26	Ground	Ground	Cable Shield

카메라 출력은 카메라 링크 표준(Camera Link Standard)을 따르며, 커넥터의 핀 구성은 다음 표와 같습니다.

 Table 7.1
 Pin Assignments for Camera Link Connector 1

PAIR List	Pin	Signal Name	Туре	Description
	1	Ground	Ground	Cable Shield
PAIR U	14	Ground	Ground	Cable Shield
	2	-Y0	LVDS - Out	Camera Link Transmitter
PAIR I	15	+Y0	LVDS - Out	Camera Link Transmitter
	3	-Y1	LVDS - Out	Camera Link Transmitter
PAIR 2	16	+Y1	LVDS - Out	Camera Link Transmitter
	4	-Y2	LVDS - Out	Camera Link Transmitter
PAIR 3	17	+Y2	LVDS - Out	Camera Link Transmitter
	5	-YCLK	LVDS - Out	Camera Link Transmitter
PAIK 4	18	+YCLK	LVDS - Out	Camera Link Clock Tx
	6	-Y3	LVDS - Out	Camera Link Channel Tx
PAIR 3	19	+Y3	LVDS - Out	Camera Link Channel Tx
	7	-	Not Used	Connected with 100 ohm
FAIR 0	20	-	Not Used	
PAIR 7	8	-Z0	LVDS - Out	Camera Link Transmitter
	21	+Z0	LVDS - Out	Camera Link Transmitter
	9	-Z1	LVDS - Out	Camera Link Transmitter
FAIR 0	22	+Z1	LVDS - Out	Camera Link Transmitter
	10	-Z2	LVDS - Out	Camera Link Transmitter
FAIR 9	23	+Z2	LVDS - Out	Camera Link Transmitter
	11	-ZCLK	LVDS - Out	Camera Link Transmitter
PAIR 10	24	+ZCLK	LVDS - Out	Camera Link Clock Tx
	12	-Z3	LVDS - Out	Camera Link Channel Tx
	25	+Z3	LVDS - Out	Camera Link Channel Tx
	13	Ground	Ground	Cable Shield
PAIR 12	26	Ground	Ground	Cable Shield

 Table 7.2
 Pin Assignments for Camera Link Connector 2

Model	Camera Link Tap Geometry	CL Configuration	CL Connector 1	CL Connector 2
VP-31MC	2 Tap	BASE	0	Х
	4 Тар	MEDIUM	0	0
	8 Tap	FULL	0	0
	10 Tap	10 Тар	0	0

Table 7.3 Camera Link Tap Geometry별 커넥터 연결

Camera Link 케이블을 사용하여 CL Frame Grabber 와 카메라의 Camera Link 커넥터를 연결할 때 연결 위치에 주의해야 합니다. Connector 1 과 Connector 2 의 위치가 바뀌면 카메라의 영상이 제대로 출력되지 않거나 PC 와 카메라의 Serial 통신이 정상적으로 수행되지 않습니다.

7.3 전원 입력 단자

카메라의 전원 입력 단자(Power Input Receptacle)는 Hirose 6 핀 커넥터(part # HR10A-7R-6PB)이며 핀 배치 및 구성은 다음과 같습니다.

Figure 7.3 전원 입력 단자의 핀 배치도

Pin Number	Signal	Туре	Description
1, 2, 3	+12V DC	Input	DC Power Input
4, 5, 6	DC Ground	Input	DC Ground

Table 7.4 전원 입력 단자의 핀 구성

	•	Hirose 6 핀 커넥터에 권장되는 메이팅(mating) 커넥터는 Hirose 6 핀 플러그(part #
i		HR10A-7P-6S) 또는 동종의 커넥터입니다.
	•	외부 전원 공급 장치는 11~24 V 전압 출력에 5A 이상 전류 출력을 가지는 전원
		어댑터의 사용을 추천합니다(※ 제조사 ㈜뷰웍스는 어댑터를 제공하지 않음).

전원 입력 시 주의사항

7.4 컨트롤 입/출력 단자

컨트롤 입/출력 단자(Control I/O Receptacle)는 Hirose 4 핀 커넥터(part # HR10A-7R-4S)이며, 외부 트리거 신호 입력과 스트로브 출력 포트로 구성되어 있습니다. 핀 배치 및 구성은 다음과 같습니다.

Figure 7.4 컨트롤 입/출력 단자 핀 배치도

Pin Number	Signal	Туре	Description
1	Trigger Input +	Input	3.3 V ~ 24.0 V TTL input
2	Trigger Input -	Input	-
3	DC Ground	-	DC Ground
4	Lino1 Output	Output	3.3 V TTL Output
4			Output resistance: 47 Ω

Table 7.5 컨트롤 입/출력 단자의 핀 구성

Hirose 4 핀 커넥터에 권장되는 메이팅(mating) 커넥터는 Hirose 4 핀 플러그(part # HR10A-7P-4P) 또는 동종의 커넥터입니다.

7.5 Trigger Input Circuit

아래 그림은 4 핀 커넥터의 트리거 신호 입력 회로를 나타내고 있습니다. 트리거 입력 신호는 포토 커플러를 통해 내부 회로로 전달됩니다. Debounce 기능을 사용하여 카메라에서 유효한 입력 신호로 판단할 입력 신호의 폭을 지정할 수 있습니다. 외부 트리거 신호의 입력은 아래의 회로도와 같이 신호를 공급할 수 있습니다.

Figure 7.5 Trigger Input Schematic

7.6 Strobe Output Circuit

스트로브 출력 신호는 3.3 V 출력 레벨의 TTL Driver IC 를 통해서 출력되며 신호의 펄스 폭은 카메라의 Exposure Signal(shutter)과 동기되어 출력됩니다.

Figure 7.6 Strobe Output Schematic

8 Acquisition Control

이 장에서는 영상 획득을 제어하는 데 필요한 다음과 같은 항목에 대해 자세한 정보를 제공합니다.

- 영상 획득 트리거 방법
- 노출 시간 설정
- Frame rate 제어
- 카메라 설정에 따른 최대 frame rate 변화

8.1 개요

이 절에서는 영상을 획득하는 데 필요한 요소에 대해 간략하게 설명합니다.

영상 획득을 제어하는 데 필요한 중요한 세 가지 요소는 다음과 같습니다.

- Acquisition Start/Stop 명령 및 Acquisition Mode 파라미터
- Exposure Start(노출 시작) 트리거
- 노출 시간 제어

이 장의 설명에 나오는 프레임은 일반적으로 획득한 한 장의 영상을 의미합니다.

Acquisition Start/Stop 명령 및 Acquisition Mode

Acquisition Start 명령을 실행하면 카메라는 영상 획득을 준비합니다. Acquisition Start 명령을 실행하지 않으면 카메라는 영상을 획득할 수 없습니다.

Acquisition Mode 파라미터는 Acquisition Start 명령의 작동 방법에 직접적인 영향을 미칩니다.

Acquisition Mode 파라미터를 Single Frame 으로 설정하면 Acquisition Start 명령을 실행한 후 한 장의 영상만 획득할 수 있습니다. 한 장의 영상을 획득한 후 Acquisition Start 명령은 만료되고, 다음 영상을 획득하려면 Acquisition Start 명령을 새로 실행해야 합니다.

Acquisition Mode 파라미터를 Continuous 로 설정하면 한 장의 영상을 획득한 후에도 Acquisition Start 명령은 만료되지 않습니다. Acquisition Start 명령을 실행한 후 원하는 만큼 영상을 획득할 수 있습니다. Acquisition Start 명령은 Acquisition Stop 명령을 실행하기 전까지 계속 유지됩니다. Acquisition Stop 명령을 실행하면 카메라는 Acquisition Start 명령을 새로 실행하기 전까지 영상을 획득할 수 없습니다.

Exposure Start 트리거

Exposure Start 트리거 신호를 카메라에 공급하면 카메라는 *Exposure Start 트리거 획득 대기 상태*를 해제한 후 노출 과정을 진행하고 프레임을 readout 합니다(Figure 8.1). 카메라가 다음 Exposure Start 트리거 신호를 받아들일 상태가 되면 카메라는 *Exposure Start 트리거 획득 대기 상태*로 되돌아갑니다. 이 상태에서 새로운 Exposure Start 트리거 신호를 카메라에 공급하면 카메라는 다음 노출을 시작합니다. Exposure Start Trigger 는 다음과 같이 두 가지 모드로 설정할 수 있습니다. Trigger Mode 파라미터를 Off 로 설정하면 카메라는 필요한 Exposure Start 트리거를 내부에서 발생시키므로 사용자가 Exposure Start 신호를 공급할 필요가 없습니다. 카메라에서 발생하는 신호와 영상을 획득하는 속도는 frame rate 관련 파라미터의 설정에 따라서 결정됩니다. Trigger Mode 파라미터를 On 으로 설정하면 사용자가 카메라에 Exposure Start 트리거 신호를 공급해서 카메라가 노출 과정을 시작하도록 해야 합니다. 트리거 신호가 공급될 때마다 카메라는 노출 과정을 시작합니다. 이러한 방법으로 노출 과정이 진행될 때, 허용 가능한 최대 frame rate 보다 빠른 속도로 트리거 신호를 공급하면 안 됩니다(허용 가능한 최대 frame rate 는 이 장 끝에서 설명). 카메라가 *Exposure Start 트리거 획득 대기 상태*가 아닐 때 트리거 신호를 공급하면 해당 신호는 무시됩니다.

Figure 8.1 Exposure Start Triggering

트리거 신호 공급

앞의 절에서는 "트리거 신호 공급"에 대해서 얘기하고 있습니다. Exposure Start 트리거 신호를 카메라에 공급하는 방법에는 Software, User Output0, CC1, Timer0 Active 또는 Line0(흔히 Hardware 라고 함) 다섯 가지가 있습니다.

- Software 를 통해서 트리거 신호를 공급하려면 Trigger Source 파라미터를 Software 로 설정해야 합니다. 그런 다음 Trigger Software 명령을 실행할 때마다 Exposure Start 트리거 신호가 카메라에 공급됩니다.
- 사용자 설정(User Output) Exposure Start 트리거 신호를 카메라에 공급하려면 Trigger Source 파라미터를 User Output0 으로 설정해야 합니다. 그런 다음 User Output Value 파라미터를 On(상승) 또는 Off(하강)로 전환하여 Exposure Start 트리거 신호를 카메라에 공급할 수 있습니다.
- CL Frame Grabber 를 통해서 트리거 신호를 공급하려면 Trigger Source 파라미터를 CC1 로 설정해야 합니다. 그런 다음 CL Frame Grabber 제조사에서 제공하는 API 를 활용하여 외부에서 생성한 전기 신호를 Exposure Start 트리거 신호로서 카메라에 공급할 수 있습니다. 자세한 내용은 Camera Link Frame Grabber 사용 설명서를 참조하십시오.
- 사용자 설정 Timer 기능을 통해서 트리거 신호를 공급하려면 Trigger Source 파라미터를 Timer0
 Active 로 설정해야 합니다. Counter And Timer Control 범주에서 Timer Trigger Source 파라미터를
 Line0 으로 설정하면 Line0 신호를 소스 신호로 사용하는 Timer 를 사용하여 Exposure Start 트리거
 신호를 카메라에 공급할 수 있습니다.
- Hardware 를 통해서 트리거 신호를 공급하려면 Trigger Source 파라미터를 Line0 으로 설정해야 합니다. 그런 다음 적절한 전기 신호를 카메라에 공급하면 발생된 Exposure Start 트리거 신호를 카메라에서 인식하게 됩니다.

노출 시간 제어

Exposure Start 트리거 신호를 카메라에 공급하면 카메라는 영상 획득을 시작합니다. 영상 획득 과정에서 중요한 요소는 영상을 획득하는 동안 카메라 센서의 픽셀이 빛에 노출되는 시간입니다. 카메라의 Trigger Source 를 Software 로 설정하면 Exposure Time 파라미터에 의해 각 영상의 노출 시간이 결정됩니다.

카메라의 Trigger Source 를 User Output0, CC1, Timer0 Active 또는 Line0 으로 설정하면 Timed 와 Trigger Width 두 가지 방법으로 Exposure Mode 를 설정할 수 있습니다. Timed 로 설정하면 Exposure Time 파라미터에 의해 각 영상의 노출 시간이 결정되고, Trigger Width 로 설정하면 사용자가 User Output, CC1, Timer 또는 Hardware 신호의 상승(rising)과 하강(falling)을 조작함에 따라 노출 시간이 결정됩니다. Trigger Width 모드는 영상마다 다른 노출 시간을 적용할 때 유용합니다.

8.2 Acquisition Start/Stop 명령 및 Acquisition Mode

Acquisition Start 명령을 실행하면 카메라는 영상 획득을 준비합니다. Acquisition Start 명령을 실행하지 않으면 카메라는 영상을 획득할 수 없습니다.

Acquisition Stop 명령을 실행하면 카메라의 영상 획득 기능을 종료합니다. Acquisition Stop 명령을 실행하면 카메라는 다음과 같이 작동합니다.

- 카메라가 영상 획득 과정을 진행하고 있지 않으면 즉시 영상 획득 기능을 종료합니다.
- 카메라가 영상 획득 과정을 진행하고 있으면 진행 중인 영상 획득 과정을 완료하고 새 영상 획득 기능을 종료합니다.

Acquisition Status 파라미터를 사용하여 카메라가 현재 영상 획득 과정을 진행하고 있는지 여부를 확인할 수 있습니다. 카메라가 영상 획득 과정을 진행하고 있을 때 Acquisition Status 파라미터를 읽으면 True 를 반환하거나 체크상자가 선택되고, 영상 획득 과정을 진행하고 있지 않을 때 Acquisition Status 파라미터를 읽으면 False 를 반환하거나 체크상자가 선택 해제됩니다.

카메라의 영상 획득 기능을 완전히 종료하기 전에 Acquisition Start 명령을 다시 실행하면, 해당 명령은 카메라에서 무시될 수 있습니다. 이러한 문제를 방지하려면 Acquisition Stop 명령을 실행하고 카메라가 영상 획득 과정을 완료할 때까지 기다린 다음 Acquisition Start 명령을 실행하십시오.

Acquisition Mode 파라미터는 Single Frame, Multi-Frame, Continuous 세 가지로 설정할 수 있습니다. Acquisition Start 및 Acquisition Stop 명령과 Acquisition Mode 파라미터는 서로 밀접한 관계가 있습니다.

Acquisition Mode 파라미터를 Single Frame 으로 설정하면 Acquisition Start 명령을 실행한 후 한 장의 영상을 획득합니다. 한 장의 영상을 획득한 후 카메라는 내부적으로 Acquisition Stop 명령을 실행하고 더 이상 영상을 획득하지 않습니다. 다음 영상을 획득하려면 Acquisition Start 명령을 새로 실행해야 합니다. Acquisition Mode 파라미터를 Multi-Frame 으로 설정하면 Acquisition Start 명령을 실행한 후 Acquisition Frame Count 파라미터에 지정한 수만큼 카메라는 Exposure Start 트리거 신호를 수신할 수 있습니다. 카메라는 Acquisition Frame Count 파라미터에 설정한 수만큼 Exposure Start 트리거 신호를 수신할 때까지 Exposure Start 트리거 신호에 반응합니다. 그런 다음 Acquisition Start 명령은 만료되고, 다음 영상을 획득하려면 Acquisition Start 명령을 새로 실행해야 합니다.

Acquisition Mode 파라미터를 Continuous 로 설정하면 Acquisition Start 명령을 실행한 후 원하는 만큼 Exposure Start 트리거 신호를 수신할 수 있습니다. 카메라가 *Exposure Start 트리거 획득 대기 상태*에서 Exposure Start 트리거 신호를 수신할 때마다 카메라는 영상을 획득하고 전송합니다. 카메라는 Acquisition Stop 명령을 실행할 때까지 계속해서 영상을 획득합니다. Acquisition Stop 명령을 실행하면 더 이상 영상을 획득할 수 없습니다.

8.3 Exposure Start 트리거

Exposure Start 트리거는 영상 획득을 시작하는 데 사용됩니다. Exposure Start 트리거는 카메라 내부에서 생성하거나 Trigger Source 를 Software, User Output0, CC1, Timer0 Active 또는 Line0 으로 설정하여 외부에서 공급할 수도 있습니다. Exposure Start 트리거 신호를 카메라에 공급하면 카메라는 노출 과정을 시작합니다.

8.3.1 Trigger Mode

Exposure Start 트리거와 관련된 가장 중요한 파라미터는 Trigger Mode 파라미터입니다. Trigger Mode 파라미터는 Off 또는 On 으로 설정할 수 있습니다.

Acquisition Start 명령을 실행한 후에는 Trigger Mode 파라미터를 변경할 수 없습니다. Acquisition Stop 명령을 실행한 후 Trigger Mode 파라미터를 변경하십시오.

8.3.1.1 Trigger Mode = Off

Trigger Mode 파라미터를 Off 로 설정하면 필요한 모든 Exposure Start 트리거 신호를 카메라 내부에서 생성하기 때문에 사용자는 카메라에 Exposure Start 트리거 신호를 공급할 필요가 없습니다. Trigger Mode 를 Off 로 설정하면 Acquisition Mode 파라미터의 설정 방식에 따라서 다음과 같이 카메라에서 Exposure Start 트리거를 생성합니다.

- Single Frame: Acquisition Start 명령을 실행할 때마다 카메라는 자동으로 하나의 Exposure Start 트리거 신호를 생성합니다.
- Multi-Frame: Acquisition Start 명령을 실행하면 Acquisition Frame Count 파라미터에 설정된 수만큼 카메라는 자동으로 Exposure Start 트리거 신호를 생성합니다. 카메라는 Acquisition Frame Count 의 설정 값과 동일한 수의 Exposure Start 트리거 신호를 생성하거나 Acquisition Stop 명령을 실행할 때까지 Exposure Start 트리거 신호를 생성합니다.

Acquisition Mode 파라미터를 Multi-Frame 으로 설정한 경우에는 Acquisition Frame Count 파라미터의 값을 설정해야 합니다. 설정 가능한 Acquisition Frame Count 파라미터의 범위는 1 부터 255 까지입니다.

 Continuous: Acquisition Start 명령을 실행하면 카메라는 자동으로 Exposure Start 트리거 신호를 생성합니다. 카메라는 Acquisition Stop 명령을 실행할 때까지 계속해서 Exposure Start 트리거 신호를 생성합니다.

Free Run

Trigger Mode 파라미터를 Off 로 설정하고, Acquisition Mode 파라미터를 Continuous 로 설정하면 카메라 내부에서 필요한 모든 트리거 신호를 생성합니다. 이와 같이 카메라를 설정하면 사용자가 필요한 트리거를 주입하지 않아도 계속해서 영상을 획득합니다. 이러한 사용 방법을 흔히 "free run"이라고 합니다.

카메라에서 Exposure Start 트리거 신호를 생성하는 속도는 Acquisition Frame Rate 파라미터에 의해 결정될 수 있습니다.

- 현재 카메라 설정에서 허용 가능한 최대 frame rate 보다 적은 값으로 설정하면 지정한 frame rate 로 Exposure Start 트리거 신호를 생성합니다.
- 현재 카메라 설정에서 허용 가능한 최대 frame rate 보다 큰 값으로 설정하면 카메라는 허용 가능한 최대 frame rate 로 Exposure Start 트리거 신호를 생성합니다.

Trigger Mode = Off일 때 노출 시간 제어

Trigger Mode 파라미터를 Off 로 설정하면 각 영상 획득에 대한 노출 시간은 Exposure Time 파라미터의 값에 의해 결정됩니다. 자세한 내용은 <u>8.4 노출 시간 설정</u>을 참조하십시오.

8.3.1.2 Trigger Mode = On

Trigger Mode 파라미터를 On 으로 설정하면 사용자는 영상 획득을 시작하려고 할 때마다 카메라에 Exposure Start 트리거 신호를 공급해야 합니다. Trigger Source 파라미터는 Exposure Start 트리거 신호 역할을 할 소스 신호(source signal)를 지정합니다.

설정 가능한 Trigger Source 파라미터는 다음과 같습니다.

- Software: 사용자 컴퓨터에서 Trigger Software 명령을 실행하여 카메라에 Exposure Start 트리거 신호를 공급할 수 있습니다.
- User Output0: 사용자 컴퓨터에서 User Output Value 파라미터를 On 또는 Off 로 설정하여 Exposure Start 트리거 신호를 공급할 수 있습니다.
- CC1: Camera Link 인터페이스의 CC1 을 통해서 카메라에 Exposure Start 트리거 신호를 공급할 수 있습니다. 자세한 내용은 Camera Link Frame Grabber 사용 설명서를 참조하십시오.
- TimerOActive: 사용자 설정 Timer 신호를 Exposure Start 트리거 신호로 공급할 수 있습니다. Counter And Timer Control 범주에서 Timer Trigger Source 파라미터를 Line0 으로 설정한 다음 Timer Delay 파라미터를 설정하면 Line0 신호에 지연 시간을 설정할 수 있습니다. 자세한 내용은 <u>9.15 Timer Control</u>을 참조하십시오.
- Line0: 외부에서 생성된 전기 신호(흔히 하드웨어 또는 External 트리거 신호라고 함)를 카메라의 컨트롤 입/출력 단자에 주입하여 카메라에 Exposure Start 트리거 신호를 공급할 수 있습니다. 자세한 내용은 <u>7.5 Trigger Input Circuit</u>를 참조하십시오.

Trigger Source 파라미터를 설정한 후 **Trigger Activation** 파라미터도 설정해야 합니다. 설정 가능한 **Trigger Activation** 파라미터는 다음과 같습니다.

- Falling Edge: 전기 신호의 하강 에지(falling edge)를 Exposure Start 트리거로 작동하도록 지정합니다.
- Rising Edge: 전기 신호의 상승 에지(rising edge)를 Exposure Start 트리거로 작동하도록 지정합니다.

Trigger Mode = On일 때 노출 시간 제어

Trigger Mode 파라미터를 On 으로 설정하고 Trigger Source 파라미터를 Software 로 설정한 경우 각 영상 획득에 대한 노출 시간은 Exposure Time 파라미터의 설정 값에 의해 결정됩니다.

Trigger Mode 파라미터를 On 으로 설정하고 Trigger Source 파라미터를 CC1 또는 Line0으로 설정한 경우 각 영상에 대한 노출 시간은 다음과 같이 Exposure Mode 파라미터 설정에 따라서 결정됩니다.

- Exposure Mode = Timed: Exposure Time 파라미터에 의해 노출 시간이 제어됩니다.
- Exposure Mode = Trigger Width: 외부 트리거 신호를 조작하여 노출 시간을 제어할 수 있습니다.

Trigger Mode 파라미터를 On 으로 설정하고 Trigger Source 파라미터를 Timer0 Active 로 설정한 경우 각 영상에 대한 노출 시간은 다음과 같이 Exposure Mode 파라미터 설정에 따라서 결정됩니다.

- Exposure Mode = Timed: Exposure Time 파라미터에 의해 노출 시간이 제어됩니다.
- Exposure Mode = Trigger Width: Timer Trigger Activation 파라미터를 Falling/Rising Edge 로 설정한 경우 Timer Duration 파라미터에 의해 노출 시간이 제어됩니다. Timer Trigger Activation 파라미터를 Level Low/
 Level High 로 설정한 경우에는 외부 트리거 신호를 조작하여 노출 시간을 제어할 수 있습니다.

Trigger Mode 파라미터를 On 으로 설정하고 Trigger Source 파라미터를 User Output0으로 설정한 경우 각 영상에 대한 노출 시간은 다음과 같이 Exposure Mode 파라미터 설정에 따라서 결정됩니다.

- Exposure Mode = Timed: Exposure Time 파라미터에 의해 노출 시간이 제어됩니다.
- Exposure Mode = Trigger Width: User Output Value 파라미터를 On 및 Off 로 전환하여 노출 시간을 제어할 수 있습니다.

8.3.2 Software 트리거 신호 사용하기

Trigger Mode 파라미터를 On 으로 설정하고 Trigger Source 파라미터를 Software 로 설정한 경우 카메라에 소프트웨어 트리거 신호(exposure start)를 공급해야 영상 획득을 시작할 수 있습니다. 카메라가 *Exposure Start 트리거 획득 대기 상태*에 있는 경우 카메라에서 소프트웨어 트리거 신호를 수신하면 노출을 시작하게 됩니다. 아래 그림에서는 소프트웨어 트리거 신호에 의한 영상 획득을 나타냅니다. 카메라에서 소프트웨어 트리거 신호를 수신한 다음 노출을 시작하면 카메라는 *Exposure Start 트리거 획득 대기 상태*를 해제하고 새로운 Exposure Start 트리거 신호에 반응할 수 없습니다. 카메라에서 다시 새로운 Exposure Start 트리거 신호에 반응할 수 있게 되면 카메라는 자동으로 *Exposure Start 트리거 획득 대기 상태*로 되돌아갑니다.

각 영상의 노출 시간은 Exposure Time 파라미터에 의해 결정됩니다.

Figure 8.2 Software 트리거 신호로 영상 획득하기

소프트웨어 트리거 신호를 사용하여 영상을 획득하면 사용자가 카메라에 소프트웨어 트리거 신호를 공급하는 빈도에 따라서 frame rate 가 결정됩니다. 이때, 현재 카메라 설정에서 허용 가능한 최대 frame rate 를 초과하는 속도로 트리거 신호를 공급하면 안 됩니다(허용 가능한 최대 frame rate 는 이 장 끝에서 설명). 카메라가 *Exposure Start 트리거 획득 대기 상태*가 아닐 때 수신하는 소프트웨어 트리거 신호는 무시됩니다.

8.3.3 CC1 트리거 신호 사용하기

Trigger Mode 파라미터를 On 으로 설정하고 Trigger Source 파라미터를 CC1 로 설정한 경우 카메라에 CC1 트리거 신호(exposure start)를 공급해야 영상 획득을 시작할 수 있습니다. CC1 트리거 신호는 카메라의 Exposure Start 트리거 신호 역할을 수행합니다. 자세한 내용은 Camera Link Frame Grabber 사용 설명서를 참조하십시오.

CC1 신호의 상승 에지(rising edge) 또는 하강 에지(falling edge)를 영상 획득 트리거로 사용할 수 있습니다. **Trigger Activation** 파라미터에서 상승 에지 또는 하강 에지를 트리거로 설정할지 선택합니다. 카메라가 *Exposure Start 트리거 획득 대기 상태*에 있는 경우 수신하는 트리거 신호가 적절하게 전이(transition)할 때마다 영상 획득을 시작합니다.

카메라에서 CC1 트리거 신호를 수신한 후 노출을 시작하면 *Exposure Start 트리거 획득 대기 상태*를 해제하고 새로운 Exposure Start 트리거 신호에 반응할 수 없습니다. 카메라에서 다시 새로운 Exposure Start 트리거 신호에 반응할 수 있게 되면 카메라는 자동으로 *Exposure Start 트리거 획득 대기 상태*로 되돌아갑니다. 카메라가 CC1 신호의 제어에 의해 작동하는 경우에는 CC1 트리거 신호의 주기에 의해 다음과 같이 frame rate 가 결정됩니다.

1 CC1 signal period in seconds = Frame Rate

예를 들어, 50 ms(0.05 초) 주기의 CC1 트리거 신호로 카메라를 작동하면 frame rate 는 20 fps 입니다.
8.3.4 External 트리거 신호 사용하기

 Trigger Mode 파라미터를 On 으로 설정하고 Trigger Source 파라미터를 Line0 으로 설정한 경우 컨트롤

 입/출력 단자에 주입되는 외부에서 생성한 전기 신호가 카메라의 Exposure Start 트리거 신호 역할을

 수행합니다. 이런 유형의 트리거 신호를 일반적으로 하드웨어 트리거 신호라고도 합니다.

 외부 신호의 상승 에지(rising edge) 또는 하강 에지(falling edge)를 영상 획득 트리거로 사용할 수 있습니다.

 Trigger Activation 파라미터에서 상승 에지 또는 하강 에지를 트리거로 설정할지 선택합니다.

 카메라가 Exposure Start 트리거 획득 대기 상태에 있는 경우 수신하는 트리거가 적절하게 전이(transition)할

 때마다 영상 획득을 시작합니다.

 카메라에서 외부 트리거 신호를 수신한 후 노출을 시작하면 Exposure Start 트리거 획득 대기 상태를

 해제하고 새로운 Exposure Start 트리거 신호에 반응할 수 없습니다. 카메라에서 다시 새로운 Exposure

Start 트리거 신호에 반응할 수 있게 되면 카메라는 자동으로 *Exposure Start 트리거 획득 대기 상태*로 되돌아갑니다.

카메라가 외부 신호의 제어에 의해 작동하는 경우에는 외부 트리거 신호의 주기에 의해 다음과 같이 frame rate 가 결정됩니다.

1 External signal period in seconds

예를 들어, 50 ms(0.05 초) 주기의 외부 트리거 신호로 카메라를 작동하면 frame rate 는 20 fps 입니다.

8.3.4.1 External Trigger Delay

Trigger Source 파라미터를 **Timer0Active** 로 설정하면 카메라에서 하드웨어 트리거 신호를 수신한 시점과 실제 적용되는 시점 사이에 지연 시간을 설정할 수 있습니다.

- 1. Counter And Timer Control 범주에서 Timer Trigger Source 파라미터를 Line0 으로 설정합니다.
- 2. Timer Delay 파라미터를 사용하여 지연 시간을 설정합니다.
- 3. Acquisition Control 범주에서 Trigger Source 파라미터를 Timer0Active 로 설정합니다.
- Acquisition Start 명령을 실행하고 카메라의 컨트롤 입/출력 단자에 외부에서 생성한 전기 신호를 공급하면, Timer Delay 파라미터에 설정한 지연 시간이 만료된 후 영상 획득을 위한 노출을 시작합니다.

Time Figure 8.3 External Trigger Delay

8.3.5 Exposure Mode

외부에서 생성된 트리거 신호(CC1 또는 External)를 영상 획득 트리거로 사용하는 경우에는 Timed 및 Trigger Width 두 가지 유형의 노출 모드를 사용할 수 있습니다.

Timed 노출 모드

Timed 모드를 선택하면 각 영상 획득의 노출 시간이 Exposure Time 파라미터에 의해 결정됩니다. 상승 에지(rising edge) 트리거로 설정하면 외부 트리거 신호가 상승할 때 노출 시간이 시작되고, 하강 에지(falling edge) 트리거로 설정하면 외부 트리거 신호가 하강할 때 노출 시간이 시작됩니다. 아래 그림은 상승 에지(rising edge) 트리거로 설정한 Timed 노출 모드를 나타냅니다.

이전 노출이 진행 중일 때 새로운 exposure start 트리거를 공급하면 해당 트리거 신호는 무시됩니다.

Figure 8.5 Trigger Overlapped with Timed Exposure Mode

Trigger Width 노출 모드

Trigger Width 노출 모드를 선택하면 각 영상 획득의 노출 구간을 외부 트리거 신호(CC1 또는 External)로 직접 제어할 수 있습니다. 상승 에지(rising edge) 트리거로 설정하면 외부 트리거 신호가 상승할 때 노출을 시작하고, 노출 구간은 신호가 하강할 때까지 계속됩니다. 하강 에지(falling edge) 트리거로 설정하면 외부 트리거 신호가 하강할 때 노출을 시작하고, 노출 구간은 신호가 상승할 때까지 계속됩니다. 아래 그림은 상승 에지(rising edge) 트리거로 설정한 Trigger Width 노출 모드를 나타냅니다. Trigger Width 노출은 영상마다 다른 노출 구간을 적용할 때 유용합니다.

Figure 8.6 Trigger Width Exposure Mode

8.3.6 Short Exposure Mode

VP-31MC-26 H 카메라는 일반 노출 모드보다 매우 짧은 노출 시간을 설정할 수 있는 Short Exposure Mode 를 제공합니다. 설정 가능한 노출 시간의 범위(<u>Table 8.2 최소 및 최대 노출 시간 설정 값</u> 참조)와 Exposure Offset(<u>Table 8.1 Exposure Offset</u>)은 Short Exposure Mode 설정에 따라서 결정됩니다.

- Short Exposure Mode = Off: 일반 노출 모드로 작동합니다.
- Short Exposure Mode = Super Short: 일반 노출 모드보다 짧은 Exposure Offset 을 노출 시간에 추가하여 짧은 노출 시간을 설정할 수 있습니다.
- Short Exposure Mode = Ultra Short: 가장 짧은 Exposure Offset 을 노출 시간에 추가하고 매우 짧은 노출 시간을 설정할 수 있습니다.

Exposure Mode

Short Exposure Mode 파라미터를 Off 나 Super Short 로 설정한 경우에는 Timed 및
 Trigger Width 두 가지 유형의 Exposure Mode 를 모두 사용할 수 있지만, Short
 Exposure Mode 를 Ultra Short 로 설정하면 Exposure Mode 는 Timed 만 지원합니다.

Short Exposure Mode 파라미터를 Super Short 로 설정하고, 허용 가능한 최대 frame rate 보다 느린 속도로 영상을 획득하면 카메라에서 출력하는 픽셀 값에 offset 이 추가될 수 있습니다.

8.3.7 Exposure Offset

VP-31MC-26 H 카메라는 Exposure Time 파라미터 또는 외부 트리거 신호의 폭으로 결정된 노출 시간에 Exposure Offset 을 자동으로 추가합니다.

원하는 노출 시간으로 영상을 획득하려면, 다음과 같이 Exposure Offset을 고려해서 노출 시간을 설정해야 합니다.

1. 원하는 노출 시간에서 Exposure Offset 을 뺍니다.

2. 결과 값으로 Exposure Time 파라미터를 설정하거나, 외부 트리거 신호의 폭을 설정합니다.

Short Exposure Mode	Exposure Offset
Off (Normal Exposure Mode)	30.06 μs
Super Short	2.80 µs
Ultra Short	0.03 <i>µ</i> s

예를 들어, Short Exposure Mode 를 Off 로 설정한 경우 노출 시간을 약 300 µs로 설정하려면, Exposure Time 파라미터를 270 µs(300 – 30.06 = 269.94 ≒ 270)로 설정하거나, High 또는 Low 구간이 270 µs인 외부 트리거 신호를 사용합니다.

8.4 노출 시간 설정

이 절에서는 Exposure Time 파라미터를 설정하여 노출 시간을 어떻게 조절하는지 설명합니다. 카메라를 다음과 같은 방식으로 작동할 때에는 Exposure Time 파라미터를 설정하여 노출 시간을 지정해야 합니다.

- Trigger Mode 를 Off 로 설정
- ◆ Trigger Mode 는 On, Trigger Source 는 Software 로 설정
- Trigger Mode 는 On, Trigger Source 는 User Output0, CC1, Timer0 Active 또는 Line0, Exposure Mode 는 Timed 로 설정

VP-31MC-26 H 카메라는 Exposure Time 파라미터로 설정한 노출 시간에 Exposure Offset(<u>Table 8.1</u> Exposure Offset 참조)을 자동으로 추가합니다. Exposure Time 파라미터는 마이크로세컨드(μs) 단위로 노출 시간을 설정합니다. 카메라의 허용 가능한 최소 및 최대 노출 시간은 다음과 같습니다.

Short Exposure Mode	최소 노출 시간	최대 노출 시간
Off (Normal Exposure Mode)	7.84 µs	60,000,000 µs†
Super Short	7.84 µs	60,000,000 µs†
Ultra Short	2.37 µs	32.27 µs

↑: Exposure Mode 를 Trigger Width 로 설정한 경우 노출 시간은 트리거 신호의 폭에 의해 결정되고 최대 제한은 없습니다.

Table 8.2 최소 및 최대 노출 시간 설정 값

8.5 Exposure와 Readout Overlap

카메라의 영상 획득 과정에는 두 가지 다른 과정이 포함됩니다. 첫 번째 과정은 이미지 센서의 픽셀을 노출하는 과정입니다. 노출 과정을 완료하면 센서에서 픽셀 값을 readout 하는 두 번째 과정을 진행합니다. 이러한 영상 획득 과정과 관련해서 VP-31MC-26 H 카메라는 기본적으로 노출 과정과 readout 과정의 중첩(overlap)을 허용하는 'overlapped' 노출 모드로 작동합니다. 이전 영상에 대한 픽셀 값을 readout 하는 동안 카메라에 트리거 신호를 공급하면 새로운 영상에 대한 노출을 시작합니다. 아래 그림은 Trigger Mode 파라미터를 On, Trigger Source 파라미터를 Line0, Exposure Mode 파라미터는 Trigger Width 로 설정한 경우를 나타냅니다.

Figure 8.8 Overlapped Exposure and Readout

카메라의 노출과 readout 과정의 overlap 여부는 명령 또는 설정과 관계없으며, 카메라의 작동 방법에 따라 overlap 여부가 결정됩니다. "Frame Period"를 하나의 영상에 대한 노출 시작 지점부터 다음 영상에 대한 노출 시작 지점까지의 구간으로 정의할 경우 다음과 같습니다.

• Overlapped: Frame Period ≤ Exposure Time + Readout Time

Guidelines for Overlapped Exposure

카메라의 노출과 readout 과정은 overlap 하도록 작동하므로 다음 두 가지 사항을 명심해야 합니다.

- 이전 영상의 노출이 진행 중일 때 새로운 영상의 노출을 시작하면 안 됩니다.
- 이전 영상의 readout 을 완료하기 전까지 현재 영상의 노출이 완료되면 안 됩니다.

카메라의 노출과 readout 과정이 overlap 되고 외부 트리거 신호를 사용하여 영상을 획득하도록 카메라를 작동할 때, Exposure Time 파라미터 설정과 타이밍 공식을 사용하여 새 영상에 대한 허용 가능한 노출 시작 시점을 계산해야 합니다.

8.6 Global Shutter

VP-31MC-26 H 카메라는 전자 글로벌 셔터가 장착된 영상 센서를 사용합니다. Exposure Start 트리거를 글로벌 셔터가 장착된 카메라에 공급하면 아래 그림과 같이 센서의 모든 라인에서 노출을 시작합니다. 이 노출 과정은 설정한 노출 시간이 끝나거나 Trigger Width 노출 모드를 사용하는 경우에는 Exposure Start 트리거 신호가 노출 시간을 종료할 때까지 센서의 모든 라인에서 계속됩니다. 노출은 센서의 모든 라인에서 종료되고, 즉시 픽셀 데이터 readout 과정을 시작합니다. 이 readout 과정은 라인 단위로 진행되고 모든 픽셀 데이터를 readout 할 때까지 계속됩니다.

글로벌 셔터의 가장 큰 특징은 각각의 영상을 획득할 때, 센서의 모든 픽셀이 동시에 노출을 시작하고 동시에 노출을 종료한다는 점입니다. 이를 통해 획득한 영상의 전체 영역에서 영상 밝기가 더욱 균일한 경향을 띠게 되고, 이로 인해 움직이는 물체의 영상을 획득할 때 발생할 수 있는 문제를 최소화할 수 있습니다. 카메라는 영상의 노출 시간이 시작하면 상승하고 노출 시간이 끝나면 종료하는 Exposure Active 출력 신호를 제공합니다.

Figure 8.9 Global Shutter

8.7 허용 가능한 최대 Frame Rate

일반적으로 카메라에서 허용 가능한 최대 frame rate 는 다음과 같은 여러 요소에 의해 제한됩니다.

- 카메라에서 획득한 영상을 사용자 컴퓨터로 전송하는 시간. 전송 시간은 카메라에 할당된 대역폭에 의해 결정됩니다.
- 영상 센서에서 데이터를 readout 한 다음 카메라의 프레임 버퍼로 전송하는 시간. 이 시간은 영상의 ROI 설정 값에 의해 결정됩니다. 영상의 크기가 작으면 센서에서 readout 하는 시간이 더 적게 걸립니다. 영상의 높이와 폭 설정은 Image Format Control 범주에서 Height 및 Width 설정 값에 의해 결정됩니다.
- Camera Link Tap Geometry. 더 많은 Tap 을 사용하는 Camera Link Tap Geometry 로 설정하면 더 적은 Tap 을 사용하는 Camera Link Tap Geometry 로 설정했을 때보다 더 빠른 속도로 영상을 획득할 수 있습니다.
- 영상에 대한 노출 시간. 매우 긴 노출 시간을 사용하면 초당 획득할 수 있는 영상 수가 줄어듭니다.

8.7.1 허용 가능한 최대 Frame Rate 증가하기

카메라의 현재 설정에서 허용 가능한 최대 frame rate 보다 더 빠른 속도로 영상을 얻으려면 최대 frame rate 에 영향을 미치는 다음의 요소를 하나 이상 조절하고 속도가 증가했는지 확인합니다.

- 카메라에서 영상을 전송하는 시간은 frame rate 를 제한하는 중요한 요소입니다. ROI 기능을 사용하여 영상 전송 시간을 줄일 수 있습니다(이로 인해 최대 frame rate 는 증가됩니다).
 - 영상의 크기를 줄이면 허용 가능한 최대 frame rate 를 증가할 수 있습니다. 가능한 경우 Image
 ROI 의 Height 및 Width 설정 값을 줄입니다.
- Camera Link Pixel Clock 속도를 낮은 값으로 설정한 경우에는 높은 값으로 설정합니다. 설정하기 전에 사용하는 CL Frame Grabber 가 높은 Pixel Clock 속도를 지원하는지 확인하십시오.
- 적은 Tap 을 사용하는 Camera Link Tap Geometry 를 사용하는 경우 더 많은 Tap 을 사용하는 Camera Link Tap Geometry 로 변경합니다. 이 경우 일반적으로 최대 frame rate 는 증가합니다.
- 정상적인 노출 시간으로 최대 해상도의 영상을 획득하도록 카메라를 설정했다면 노출 시간은 frame rate 를 제한하지 않습니다. 하지만, 긴 노출 시간을 사용하는 경우에는 노출 시간이 최대 frame rate 를 제한할 수 있습니다. 긴 노출 시간을 사용하는 경우 노출 시간을 짧게 설정하고 최대 frame rate 가 증가하는지 확인합니다. 이 경우 짧은 노출 시간으로 인해 밝은 광원을 사용하거나 렌즈 조리개를 열어서 더 많은 빛을 받아들일 수 있도록 설정해야 할 수도 있습니다.

매우 긴 노출 시간을 사용하면 허용 가능한 최대 frame rate 를 상당히 제한하게 됩니다. 예를 들어, 노출 시간을 1초로 설정하면 영상 한 장을 획득하는 데 최소 1초를 소요하기 때문에 카메라는 최대 1초에 한 장의 영상만 획득할 수 있습니다.

9 Camera Features

9.1 Image Region of Interest

Image ROI(Region of Interest) 기능을 통해 사용자는 영상의 전체 영역 중 필요로 하는 데이터를 포함한 국소 영역을 지정할 수 있습니다. 사용자는 전체 영역에서 일부 영역만을 필요로 할 때 그 영역을 ROI로 지정함으로써 전체 영역을 획득할 때와 동일한 품질의 영상을 보다 빠른 속도로 얻을 수 있습니다. 이때, Width 및 Height 를 작게 설정하면 허용 가능한 최대 frame rate 가 증가합니다. ROI는 아래 그림과 같이 센서 열(array)의 왼쪽 상단 끝을 원점으로 참조하여 설정됩니다.

ROI 설정과 관련된 XML 파라미터는 다음과 같습니다.

XML Parameters		Value	Description
SensorWidth ^a		-	센서의 유효 폭
	SensorHeight ^a	-	센서의 유효 높이
	WidthMax	-	현재 설정에서 출력 가능한 최대 폭
ImagaEarmatControl	HeightMax	-	현재 설정에서 출력 가능한 최대 높이
imagerormatcontrol	Width ^b	-	Image ROI 의 폭 설정
	Height ^b	-	Image ROI 의 높이 설정
	OffsetX ^c	-	Image ROI 와 원점과의 수평 Offset 설정
	OffsetY ^c	-	Image ROI 와 원점과의 수직 Offset 설정

이 표의 모든 파라미터는 pixel 단위

a: 사용자가 변경할 수 없는 값

b: ROI의 크기를 설정하는 사용자 메뉴

c: ROI의 원점 위치를 설정하는 사용자 메뉴

Table 9.1 XML Parameters related t	to	ROI
------------------------------------	----	-----

사용자는 Image Format Control 범주의 Width 와 Height 파라미터를 설정하여 ROI 크기를 변경할 수 있습니다. 그리고 Offset X 와 Offset Y 파라미터를 설정하여 ROI 의 원점 위치를 변경할 수 있습니다. 이때, Width + Offset X 값은 Width Max 값보다 작아야 하고, Height + Offset Y 값은 Height Max 값보다 작아야 합니다. 카메라의 Width 와 Height 는 기본적으로 최대값으로 설정되어 있으므로 사용자는 ROI 크기를 먼저 설정한 후 Offset 값을 설정해야 합니다.

• VP-31MC-26 H 카메라의 경우 Width 파라미터는 16 의 배수로 설정해야 하고, Height 파라미터는 4 의 배수로 설정해야 합니다.

VP-31MC-26 H 카메라에서 설정 가능한 최소 ROI Width 및 Height는 다음과 같습니다.

Minimum Width	Minimum Height
16	4

Table 9.2 Minimum ROI Width and Height Settings

Acquisition Start 명령을 실행한 후 카메라의 Image ROI 설정을 변경하면 비정상적인 영상을 획득할 수 있습니다. Acquisition Stop 명령을 실행한 후 Image ROI 설정을 변경하십시오.

VP-31MC-26 H 카메라에서 Horizontal 및 Vertical ROI의 변화에 따른 최대 프레임 속도는 아래 표와 같습니다.

ROI Size (H × V)	2 Тар	4 Tap	8 Тар	10 Тар
6464 × 4	354.4 fps	707.1 fps	1157.0 fps	1442.3 fps
6464 × 1000	24.5 fps	48.9 fps	95.8 fps	119.5 fps
6464 × 2000	12.6 fps	25.2 fps	49.9 fps	62.2 fps
6464 × 3000	8.5 fps	17.0 fps	33.7 fps	42.0 fps
6464 × 4000	6.4 fps	12.8 fps	25.4 fps	31.7 fps
1312 × 4852	25.9 fps	25.9 fps	25.9 fps	25.9 fps
2624 × 4852	13.0 fps	25.9 fps	25.9 fps	25.9 fps
5264 × 4852	6.5 fps	13.0 fps	25.9 fps	25.9 fps
6464 × 4852	5.3 fps	10.6 fps	21.0 fps	26.2 fps

Table 9.3 VP-31MC-26 H ROI 크기에 따른 최대 프레임 속도(@ Camera Link Pixel Clock 85배z)

ROI 모드를 사용할 경우 Frame Grabber 의 사양에 따라 적용 가능한 ROI 값(H × V)이 달라질 수 있습니다. 자세한 내용은 Frame Grabber 사용 설명서를 참조하십시오.

9.2 Multi-ROI

VP-31MC-26 H 카메라에서 제공하는 Multi-ROI 기능을 통해 전체 센서 영역에서 최대 8개의 ROI를 지정할 수 있습니다. Multi-ROI를 설정하면 영상을 획득할 때 지정한 영역의 픽셀 정보만 센서에서 readout 합니다. 그런 다음, 지정한 영역에서 readout 한 정보를 조합하여 하나의 영상으로 카메라에서 전송합니다. Multi-ROI 설정과 관련된 XML 파라미터는 다음과 같습니다.

XML Parameters		Value	Description
	MultiROISelector	Region0 ~ Region7	설정할 ROI 선택
	MultiROIMode	On/Off	선택한 ROI 설정/해제
	MultiROIWidth	-	선택한 ROI의 설정 폭
	MultiROIHeight	-	선택한 ROI의 설정 높이
	MultiROIOffsetX	-	선택한 ROI와 원점과의 수평 Offset
MultiROIControl	MultiROIOffsetY	-	선택한 ROI와 원점과의 수직 Offset
	MultiROIValid ^a	-	Multi ROI 설정 값 유효성 검사
			Multi ROI 기능 상태 표시
	MultiROIStatus	Active/Inactive	• Active: Multi-ROI 기능 사용 중
			• Inactive: Multi-ROI 기능 사용하지 않음

이 표의 모든 파라미터는 pixel 단위

a: Multi-ROI 설정 값이 유효할 때 True 를 반환하거나 체크상자가 선택됩니다.

Table 9.4 XML Parameters related to Multi-ROI

여러 ROI를 설정할 때 Multi-ROI Width 파라미터는 모든 ROI에 동일하게 적용되므로 가장 먼저 설정하는 것이 좋습니다. 그런 다음, 각각의 ROI를 원하는 대로 설정합니다. ROI 번호 0 부터 7 까지 최대 8 개의 ROI를 설정할 수 있습니다. 먼저 Multi-ROI Selector 파라미터를 사용하여 설정할 ROI의 번호를 선택하고 Multi-ROI Mode 파라미터를 사용하여 해당 ROI의 On/Off 상태를 설정합니다. 그리고 해당 ROI의 Multi-ROI Offset X, Multi-ROI Offset Y 및 Multi-ROI Height 파라미터를 설정합니다.

다음 그림에서는 세 개의 ROI를 설정한 예를 보여줍니다.

이 경우 카메라는 다음과 같은 크기의 영상을 출력합니다.

• MultiROI Width × ROI Height 합(Region0 Height + Region1 Height + Region2 Height)

Figure 9.2 Multi-ROI

VP-31MC-26 H 카메라에서 Multi-ROI를 설정할 때 다음 사항에 유의해야 합니다.

- Multi-ROI Offset X 와 Multi-ROI Width 값의 합은 카메라 센서의 Width 값을 초과할 수 없습니다.
- Multi-ROI Offset Y 와 Multi-ROI Height 값의 합은 카메라 센서의 Height 값을 초과할 수 없습니다.
- Multi-ROI Offset X 와 Multi-ROI Width 값은 16 의 배수로 설정할 수 있습니다.
- Multi-ROI Offset Y 와 Multi-ROI Height 값은 4 의 배수로 설정할 수 있습니다.
- Multi-ROI 설정 값을 User Set 로 저장한 다음 원할 때 다시 불러와서 사용할 수 있습니다. 자세한 내용은 <u>9.25 User Set Control</u>을 참조하십시오.

9.3 Binning (Monochrome Only)

Binning은 인접한 픽셀의 값을 더해서 하나의 픽셀로 내보냄으로써 레벨 값은 증가시키고, 해상도는 감소시키는 효과를 갖습니다. Binning 기능 XML 파라미터는 다음과 같습니다.

XML Parameters		Value	Description
		Sensor	Binning 엔진을 Sensor 로 선택. Binning 을
	BinningSelector	Sensor	센서에 의해 아날로그로 적용합니다.
		Logic	N/A
		Sum	Binning Vertical Mode 에 따라서 자동으로
	BinningHorizontalMode	Sum	변경
ImageFormatControl		Average	N/A
	BinningHorizontal	×1, ×2	Binning Vertical 에 따라서 자동으로 변경
		Sum	Binning Vertical 설정 값만큼 인접한 픽셀의
	BinningVerticalMode		값을 더해서 하나의 픽셀 값으로 내보냅니다.
		Average	N/A
	BinningVertical	×1, ×2	수직 방향으로 더할 픽셀 수

 Table 9.5
 XML Parameters related to Binning

예를 들어, 2 × 2 binning 을 설정할 경우 카메라의 해상도가 1/4 로 줄어들게 됩니다. Binning Horizontal/Vertical Mode 를 Sum 으로 설정하면 영상은 가로 및 세로 크기가 1/2 로 축소되지만, 밝기가 4 배 증가합니다. XML 파라미터 중 현재 출력 가능한 최대 해상도 값을 나타내는 Width Max 및 Height Max 는 binning 설정에 따라 자동으로 업데이트됩니다. 또한 Width, Height, Offset X 및 Offset Y 파라미터도 binning 설정에 따라 자동으로 업데이트되고, Width 및 Height 파라미터를 통해 현재 카메라의 해상도를 확인할 수 있습니다.

VP-31MC-26 H 카메라에서 binning 기능을 적용하려면, Binning Vertical Mode 및 Binning Vertical 파라미터를 설정해야 합니다. 이 값에 따라서 Binning Horizontal Mode 및 Binning Horizontal 파라미터는 자동으로 업데이트됩니다.

Figure 9.3 2 × 2 Binning

9.4 Frame Averaging

Frame Averaging 은 영상의 Shot Noise 를 개선하기 위해 적용된 디지털 영상 처리 기술입니다. Shot Noise 는 영상 센서에 임의로(randomly) 입사하는 광자에서 기인하며, 이는 영상 센서가 갖는 근본적인 노이즈 특성의 한계입니다. Frame Averaging 기능을 사용하면 여러 장(N)의 영상을 평균해서 Shot Noise 는 줄이고, SNR(Signal to Noise Ratio)은 √N 배 증가시킬 수 있습니다. 이 경우 frame rate 는 1/N 만큼 감소합니다. VP-31MC-26 H 카메라는 최대 16 장의 영상을 평균해서 출력할 수 있고, 이 경우 SNR 을 4 배(√16 = 12 dB)까지 증가시킬 수 있습니다. 이때, frame rate 는 1/16 로 줄어듭니다. Frame Averaging 기능 관련 XML 파라미터는 다음과 같습니다.

XML	Parameters	Value	Description
		Off	Frame Averaging 기능 해제
		Average	Frame Averaging Count 에 설정한
	FrameAveragingMode	/	수만큼의 영상을 평균하여 출력
		Sum	Frame Averaging Count 에 설정한
		Sum	수만큼의 영상을 더하여 출력
	FrameAveragingCount	2 ~ 16	Frame Averaging 에 사용할 영상 수
			Frame Averaging 기능을 초기화하고
FrameAveragingControl	FrameAveragingReset	-	다시 시작
TameAveragingControl	FrameAveragingStatus		Frame Averaging 기능 상태 표시
		Dischlod	• Disabled: Frame Averaging 기능
		Disableu	해제됨
		Idle	• Idle: 첫 번째 영상 대기 중
		Dusy	• Busy: Frame Averaging 기능
			사용 중
			Frame Averaging 기능에 사용된
	FrameAveragingCurrentCount	-	영상 수 표시

 Table 9.6
 XML Parameters related to Frame Averaging Control

9.5 Pixel Format

Pixel Format 파라미터를 사용하여 카메라에서 전송하는 영상 데이터의 pixel format(8 bit, 10 bit 또는 12 bit)을 결정할 수 있습니다.

Pixel Format 관련 XML 파라미터는 다음과 같습니다.

XML Parameter		Description
ImageFormatControl PixelFormat		지원 가능한 pixel format 설정
	Table 9.7	XML Parameter related to Pixel Format

컬러 및 모노 센서가 지원하는 Pixel Format 은 다음과 같습니다.

	Mono Sensor		Color Sensor
•	Mono 8	•	Mono 8
•	Mono 10	•	Mono 10
•	Mono 12	•	Mono 12
		•	Bayer RG 8
		•	Bayer RG 10
		•	Bayer RG 12

Table 9.8 Pixel Format Values

10 bit 또는 12 bit Pixel Format 보다 8 bit Pixel Format 에서 픽셀이 더 쉽게 포화됩니다. 이는 8 bit Pixel Format 에서의 픽셀 포화 용량(Saturation Capacity)이 10 bit 또는 12 bit Pixel Format 의 1/4 밖에 안 되기 때문입니다.

9.6 Device Tap Geometry

VP-31MC-26 H 카메라는 2 Tap, 4 Tap, 8 Tap 및 10 Tap Device Tap Geometry 를 지원합니다. Tap 개수는 Camera Link Pixel Clock 의 사이클당 출력되는 픽셀 데이터 수를 나타내며 이에 따라 카메라의 Frame Rate 가 달라집니다. Frame 데이터는 아래 그림과 같이 Interleaved 방식으로 출력됩니다.

Device Tap Geometry 관련 XML 파라미터는 다음과 같습니다.

XML Parameter		Value	Description
TransportLayer	DeviceTapGeometry	Geometry_1X2_1Y	Device Tap Geometry 를 2 Tap 으로 설정
		Geometry_1X4_1Y	Device Tap Geometry 를 4 Tap 으로 설정
Control		Geometry_1X8_1Y	Device Tap Geometry 를 8 Tap 으로 설정
	Geometry_1X10_1Y	Device Tap Geometry 를 10 Tap 으로 설정	

 Table 9.9
 XML Parameter related to Device Tap Geometry

9.7 Camera Link Clock

VP-31MC-26 H 카메라는 Camera Link Pixel Clock 속도를 선택할 수 있는 기능을 제공합니다. Pixel Clock 속도는 카메라에서 사용자 컴퓨터의 Frame Grabber 로 Camera Link 인터페이스를 통해 전송되는 픽셀 데이터의 속도를 결정합니다. 카메라를 높은 Pixel Clock 속도로 설정하면 카메라에서 Frame Grabber 로 영상 데이터를 전송하는 속도가 빨라집니다. 먼저 사용하는 Frame Grabber 에서 지원하는 최대 Pixel Clock 속도를 확인하고, 카메라의 Pixel Clock 속도는 Frame Grabber 의 최대 속도를 초과하지 않는 값으로 설정하십시오.

Camera Link Clock 속도 관련 XML 파라미터는 다음과 같습니다.

XML Parameters		Value	Description
CameraLink	Comoral inkClock	Clock0	Camera Link Clock 속도를 85 빠로 설정
	CameraLinkClock	Clock1	Camera Link Clock 속도를 65 빠로 설정
	CameraLinkClockFrequency	-	Camera Link Clock 속도를 쌘 단위로 표시

 Table 9.10
 XML Parameters related to Camera Link Clock Speed

9.8 Data ROI (컬러 카메라)

컬러 카메라에서 제공하는 Auto White Balance 기능은 데이터 ROI(Region of Interest)의 픽셀 데이터를 사용하여 파라미터 값을 조절합니다. 데이터 ROI 설정을 위한 XML 파라미터는 다음과 같습니다.

XML Parameters		Value	Description
DataRoiControl	RoiSelector	WhiteBalanceAuto	 White Balance Auto 에 사용할 Data ROI 선택 컨러 카메라마 지위
	RoiOffsetX	_	ROI 시작 지점의 X 좌표
	RoiOffsetY		ROI 시작 지점의 Y 좌표
	RoiWidth	_	ROI 폭
	RoiHeight	_	ROI 높이

이미지(Image) ROI 및 데이터 ROI를 동시에 사용하는 경우에는 설정한 데이터 ROI와 이미지 ROI의 중첩되는 영역의 픽셀 데이터만 유효합니다. 유효 영역은 아래 그림과 같이 결정됩니다.

Figure 9.5 유효 데이터 ROI

9.9 White Balance (컬러 카메라)

컬러 카메라에서는 영상 센서에서 획득한 영상의 컬러 밸런스를 조정할 수 있는 white balance 기능을 사용할 수 있습니다. VP-31MC-26 H 카메라에서 제공하는 white balance 기능은 Red, Green 및 Blue 의 강도(intensity)를 개별적으로 조정할 수 있습니다. Balance Ratio 파라미터를 사용하여 각 색상의 강도를 설정할 수 있습니다. 색상의 강도는 1.0 부터 4.0 까지 설정 가능합니다. Balance Ratio 파라미터를 1.0 으로 설정한 경우 해당 색상의 강도는 white balance 메커니즘으로부터 영향을 받지 않습니다. Balance Ratio 파라미터를 1.0 보다 큰 값으로 설정하면 해당 색상의 강도는 설정 값에 비례해서 증가합니다. 예를 들어, Balance Ratio 파라미터를 1.5 로 설정하면 해당 색상의 강도는 50% 증가합니다.

White Balance 관련 XML 파라미터는 다음과 같습니다.

XML	Parameters	Value	Description
AnalogControl	BalanceRatioSelector	Red	Red 픽셀에 Balance Ratio 값 적용
		Green	Green 픽셀에 Balance Ratio 값 적용
		Green Green 픽셀에 Balance Ratio 값 적용 Blue Blue 픽셀에 Balance Ratio 값 적용	Blue 픽셀에 Balance Ratio 값 적용
	BalanceRatio	1.0× ~4.0×	선택한 색상의 강도 설정

 Table 9.12
 XML Parameters related to White Balance

9.9.1 Balance White Auto

컬러 카메라에서는 Balance White Auto 기능을 사용할 수 있습니다. GreyWorld 알고리듬에 따라 컬러 카메라에서 획득한 영상의 White Balance 를 조절합니다. Balance White Auto 기능을 수행하기 전에 Data ROI를 설정해야 합니다. Data ROI를 설정하지 않으면 Balance White Auto 기능은 Image ROI 내의 픽셀 데이터를 사용하여 White Balance 를 조절합니다. **Balance White Auto** 파라미터를 **Once** 로 설정하면 Green 을 기준으로 Red 및 Blue 의 강도를 상대적인 값으로 조절하여 White Balance 를 맞춥니다. Balance White Auto 관련 XML 파라미터는 다음과 같습니다.

XML Parameter		Value	Description
AnalogControl		Off	Balance White Auto 기능 해제
	DalanceviniteAuto	Once	White Balance 조정 1 회 수행 후 Off

Table 9.13 XML Parameter related to Balance White Auto

9.10 Gain 및 Black Level

Gain 파라미터를 증기하면 영상의 모든 픽셀 값을 증가할 수 있습니다. 이로 인해 센서에서 출력하는 값보다 높은 Grey 값을 카메라에서 출력할 수 있습니다.

- 1. Gain Selector 파라미터를 사용하여 원하는 Gain Control(Digital All 만 지원)을 선택합니다.
- 2. Gain 파라미터를 원하는 값으로 설정합니다.

Black Level 파라미터를 조절하여 카메라에서 출력하는 픽셀 값에 설정 값만큼 offset 을 추가할 수 있습니다.

- 1. Black Level Selector 파라미터를 사용하여 원하는 Black Level Control(Digital All)을 선택합니다.
- 2. Black Level 파라미터를 원하는 값으로 설정합니다. Pixel Format 파라미터 설정 값에 따라서 설정 값 범위가 달라집니다.

Gain 및 Black Level 설정 관련 XML 파라미터는 다음과 같습니다.

XML Parameters		Value	Description
	GainSelector	Digital All	모든 디지털 채널에 Gain 값 적용
Apolog Control	Gain	1.0× ~32.0×	디지털 Gain 값 설정
Analog Control	BlackLevelSelector	Digital All	모든 디지털 채널에 Black Level 값 적용
	BlackLevel	0 ~ 255	Black Level 값 설정(12 bit 기준 설정 값)

 Table 9.14
 XML Parameters related to Gain and Black Level

9.11 Defective Pixel Correction

CMOS 센서에는 빛에 정상적으로 반응하지 못하는 Defect Pixel 이 존재할 수 있습니다. 이는 출력 영상의 품질을 떨어뜨리므로 보정이 필요합니다. 각 카메라에 사용된 CMOS 센서의 Defect Pixel 정보는 출하 단계에서 카메라에 입력됩니다. 사용자가 Defect Pixel 정보를 추가하려는 경우, 새로운 Defect Pixel 의 좌표 값을 카메라에 입력해야 합니다. 자세한 방법은 <u>Appendix A</u>를 참조하십시오.

9.11.1 보정 방법

Defect Pixel 의 보정 값은 같은 라인 상에 인접한 유효 픽셀 값을 기반으로 계산됩니다.

위 그림과 같이 값을 보정해야 할 Defect Pixel 인 Current Pixel 이 있을 때, 이 픽셀의 보정 값은 주위

픽셀이 Defect Pixel 인지 아닌지에 따라 아래 표와 같이 구해집니다.

인접 Defect Pixel	Current Pixel 의 보정 값
없음	(L1 + R1) / 2
L1	R1
R1	L1
L1, R1	(L2 + R2) / 2
L1, R1, R2	L2
L2, L1, R1	R2
L2, L1, R1, R2	(L3 + R3) / 2
L2, L1, R1, R2, R3	L3
L3, L2, L1, R1, R2	R3

Table 9.15 Defect Pixel 보정 값 계산

9.12 Photo Response Non-uniformity Correction

이론적으로 밝은 환경에서 카메라로 균일하게 밝은 대상을 영상으로 획득하면 영상의 모든 픽셀 값은 거의 최대 grey 값이거나 모두 같아야 합니다. 하지만 센서 내 각 픽셀의 작은 성능 차이, 렌즈 및 조명의 변화 등으로 인해 카메라에서 출력되는 각 픽셀 값은 다를 수 있습니다. 이러한 차이를 PRNU(Photo Response Non-uniformity)라고 하고, VP-31MC-26 H 카메라는 이러한 PRNU를 보정할 수 있는 기능을 제공합니다.

XML Parameters		Value	Description
	PRNUDataSelector	Default	PRNU 데이터를 불러올 비휘발성 메모리 영역을
			Default 로 설정합니다.
		Space1 - 3	PRNU 데이터를 저장하거나 불러올 비휘발성 메모리
			영역을 사용자 설정 영역으로 설정합니다.
	PRNUDataGenerate	-	현재 카메라 설정 값에 대해 PRNU 데이터 생성
PRNII	PRNUDataSave	_	생성한 PRNU 데이터를 비휘발성 메모리에 저장합니다.
			• PRNUDataGenerate 로 생성한 데이터는 휘발성
			메모리에 저장되기 때문에 카메라의 전원을 껐다 켠
			후 해당 데이터를 사용하려면 비휘발성 메모리에
			저장해야 합니다.
		_	비휘발성 메모리에 저장되어 있는 PRNU 데이터를
	FRINUDalaLuau	_	휘발성 메모리로 불러옵니다.

PRNU 관련 XML 파라미터는 다음과 같습니다.

Table 9.16 XML Parameters related to PRNU

9.12.1 사용자 PRNU 보정 값 생성 및 저장

사용자가 실제 사용 환경에 맞게 PRNU 보정 값을 생성하고 저장하려면, 아래 절차를 따릅니다.

	•	최적화된 PRNU 데이터를 생성하려면
		PRNU 데이터를 생성하기 전에 FFC 기능은 Off 로 설정하십시오.
		▫ 균일한 광원에서 회색 참조 영상(grey reference image)을 획득해야 합니다. 균일한
(1)		조명을 전달할 수 있는 고품질의 광원을 사용하십시오. 일반적인 광원은 부적절할
		수 있습니다.
	•	Default 영역에 저장된 PRNU 보정 값은 일반적인 상황에 최적화된 값이고, 대부분의
		경우에 최적의 카메라 성능을 보여줍니다. 이 값을 사용하는 것을 권장합니다.

- 사용자 환경에 맞는 PRNU 보정 값을 생성하려면, 실제 사용 환경과 동일하게 ROI를 설정하십시오. 균일한 광원 환경을 구축하기 어려운 경우 Default PRNU 보정 값을 사용하는 것이 좋습니다.
- 렌즈를 장착하지 않은 상태에서 균일한 광원(예: backlight)을 관측 시야 내에 놓습니다. 실제 사용 환경에 맞게 카메라를 설정합니다. 이때, 영상의 디지털 출력 레벨이 150 – 200(Gain: 1.00 at 8 bit) 사이의 값이 되도록 하는 것이 좋습니다.
- 3. 카메라를 Free-Run 모드로 설정하여 영상 획득을 시작합니다.
- 4. PRNU Data Generate 명령을 실행하여 현재 카메라 설정 값에 따른 PRNU 데이터를 생성합니다.
- 5. 생성한 PRNU 보정 값은 활성화되고, 카메라의 휘발성 메모리에 저장됩니다.
- 생성한 PRNU 보정 값을 카메라의 Flash(비휘발성) 메모리에 저장하려면 PRNU Data Selector 파라미터를 사용하여 저장할 영역을 지정한 다음 PRNU Data Save 명령을 실행합니다. 이 경우 해당 메모리에 저장된 PRNU 값을 덮어쓰게 됩니다.

생성한 PRNU 보정 값을 무시하고 Flash 메모리에 있는 기존 값을 불러오려면 PRNU Data Selector 파라미터를 사용하여 불러올 PRNU 데이터가 저장된 영역을 지정한 다음 PRNU Data Load 명령을 실행합니다.

9.13 Flat Field Correction

Flat Field Correction 은 조명과 같은 외부 환경에 의해 영상의 배경이 고르지 않을 때 이를 보정하여 전체적으로 배경 값이 일정한 영상을 얻도록 하는 기능입니다. Flat Field 보정 기능을 간략화하면 아래의 식과 같이 나타낼 수 있습니다.

IC = (IR × M) / IF IC: 보정된 영상의 레벨 값 IR: 원본 영상의 레벨 값 M: 보정 후 영상의 목표 값 IF: Flat Field 데이터의 레벨 값

실제 사용 조건에서 다음 절차에 따라서 Flat Field 보정 데이터를 생성한 후 카메라의 비휘발성 메모리에 저장합니다.

- 1. Flat Field Target Selector 파라미터를 사용하여 Auto 또는 User Set 를 선택합니다.
 - □ Auto: 보정 후 영상의 목표 값을 카메라에서 자동으로 설정합니다.
 - □ User Set: Flat Field Target Level 파라미터를 사용하여 사용자 설정 목표 값을 직접 설정합니다.

 Flat Field Data Generate 파라미터를 실행합니다.
 Flat Field Data Generate 파라미터를 실행한 후 한 장의 영상을 획득하면 축소된 Flat Field 보정 데이터를 생성합니다.

- 3. Flat Field Data Selector 파라미터를 사용하여 생성한 Flat Field 보정 데이터를 저장할 위치를 선택합니다.
- Flat Field Data Save 파라미터를 실행하여 생성한 Flat Field 데이터를 비휘발성 메모리에 저장합니다.
 축소된 Flat Field 데이터는 보정에 사용될 때, Figure 9.8 과 같이 Bilinear Interpolation 으로 확대된 후 적용됩니다.
 생성한 Flat Field 보정 데이터를 무시하고 이전 Flat Field 보정 데이터를 사용하려면, Flat Field Data

Save 파라미터를 실행하기 전에 Flat Field Data Load 파라미터를 실행합니다.

5. Flat Field Correction 파라미터를 On 으로 설정하면 Flat Field 데이터를 카메라에 적용합니다.

	•	Flat Field 데이터를 생성하기 전에 Defective Pixel Correction 기능을 먼저 설정하는
		것이 좋습니다.
•	•	Flat Field Data Generate 파라미터를 실행하기 전에 다음과 같이 카메라를 설정해야
		합니다.
		OffsetX, Y: 0
CAUTION		▫ Width, Height: 최대값
	•	한 장의 영상을 획득할 수 있도록 Acquisition Start 명령을 실행한 후 카메라를 free-
		run으로 작동하거나, 트리거 신호를 카메라에 공급해야 합니다.

컬러 카메라용 Flat Field Correction

컬러 카메라에서 **Pixel Format** 파라미터를 Bayer 패턴으로 설정하고 Flat Field Correction 기능을 실행하면 FFC가 각각의 컬러 픽셀(Red, Green1, Green2, Blue)에 대해 별도로 수행됩니다. 이렇게 하면 영상 왜곡을 상당 부분 제거하여 픽셀별 컬러 균일성을 향상할 수 있습니다. Flat Field Correction 관련 XML 파라미터는 다음과 같습니다.

X	ML Parameters	Value	Description
	ElatEioldCorrection	Off	Flat Field Correction 기능 해제
		On	Flat Field Correction 기능 설정
			Flat Field 데이터를 저장 또는 불러올 영역을
	FlatFieldDataSelector	Space0 – Space23	설정합니다.
			• Space0-Space23: 사용자 설정 영역
	FlatEioldTargetSelector	Auto	보정 후 영상의 목표 값을 자동으로 설정
	FialField largelSelector	User Set	보정 후 영상의 목표 값을 사용자가 직접 설정
			Flat Field Target Selector 를 User Set 로
	FlatFieldTargetLevel	1 - 4095	설정한 경우 보정 후 영상의 목표 값
FlatField			• 12-bit Pixel Format 기준 설정 값
Control	FlatFieldDataGenerate	_	Flat Field 데이터 생성
			생성한 Flat Field 보정 데이터를 비휘발성
			메모리에 저장합니다.
			• Flat Field Data Generate 로 생성한
	FlatFieldDataSave	-	데이터는 휘발성 메모리에 저장되기 때문에
			카메라의 전원을 껐다 켠 후 해당 데이터를
			다시 사용하려면 비휘발성 메모리에
			저장해야 합니다.
	ElatEieldDatal oad	_	비휘발성 메모리에 저장되어 있는 Flat Field
		_	데이터를 휘발성 메모리로 불러옵니다.

 Table 9.17
 XML Parameters related to Flat Field Correction

VIEWORKS

Figure 9.8 Bilinear Interpolated Magnification

9.13.1 Flat Field Data Selector

앞에서 설명한 바와 같이 생성한 Flat Field 보정 데이터는 카메라의 휘발성 메모리에 저장되어 있고, 이 데이터는 카메라의 전원을 껐다 켜면 손실됩니다. 카메라의 전원을 껐다 켠 후에도 생성한 Flat Field 보정 데이터를 사용하려면 카메라의 비휘발성 메모리에 저장해야 합니다. VP-31MC-26 H 카메라는 Flat Field 보정 데이터를 저장하거나 불러올 수 있는 24 개의 비휘발성 메모리 영역을 제공합니다. Flat Field Data Selector 파라미터를 사용하여 원하는 영역을 선택할 수 있습니다.

Figure 9.9 Flat Field Data Selector

Flat Field 데이터 저장하기

현재 활성화된 Flat Field 데이터를 카메라 Flash 메모리의 지정된 영역에 저장하려면, 다음 절차를 따르십시오.

- 1. Flat Field Data Selector 파라미터를 사용하여 현재 활성화된 Flat Field 데이터를 저장할 영역을 지정합니다.
- 2. Flat Field Data Save 파라미터를 실행하여 활성화된 Flat Field 보정 데이터를 지정한 영역에 저장합니다.

Flat Field 보정 데이터 불러오기

Flat Field 보정 데이터를 카메라의 비휘발성 메모리에 저장한 경우 카메라의 활성 Flat Field 보정 데이터 영역으로 불러올 수 있습니다.

- 1. Flat Field Data Selector 파라미터를 사용하여 카메라의 활성 Flat Field 보정 데이터 영역으로 불러올 Flat Field 보정 데이터가 저장된 영역을 지정합니다.
- 2. Flat Field Data Load 파라미터를 실행하여 선택한 Flat Field 보정 데이터를 활성 Flat Field 보정 데이터 영역으로 불러옵니다.

9.14 Digital I/O Control

카메라의 컨트롤 입/출력 단자는 다양한 모드로 사용할 수 있습니다. Digital I/O Control 관련 XML 파라미터는 다음과 같습니다.

XML Parameters		Value	Description
	LineSelector	Line0	카메라의 컨트롤 입/출력 단자 1 번 핀을 입력으로 서태하니다
		Line1	카메라의 컨트롤 입/출력 단자 4 번 핀을 출력으로
			선택합니다.
	LineMada	Input	선택한 입/출력 단자(1)의 Line Mode 를 입력으로 설정합니다.
	LITEWOOD	Output	선택한 입/출력 단자(4)의 Line Mode 를 출력으로 설정합니다.
	LineInverter	FALSE	Line 출력 신호 반전되지 않음
DigitallOControl		TRUE	Line 출력 신호 반전
	LineSource	Off	Line 출력 해제
		ExposureActive	현재 노출 시간을 펄스로 출력
		FrameActive	한 프레임의 readout 구간을 펄스로 출력
		UserOutput0	UserOutputValue 설정 값에 의해 펄스 출력
		Timer0Active	사용자 설정 Timer 출력 신호를 펄스로 출력
		FALSE	Bit 를 Low 로 설정
	OserOulputvalue	TRUE	Bit 를 High 로 설정
	DebounceTime	0 – 1,000,000	마이크로세컨드 단위로 Debounce 시간 설정
			(Default: 0.5 μs)

 Table 9.18
 XML Parameters related to Digital I/O Control
Line Source 를 User Output0 으로 설정하면 사용자 설정 값을 출력 신호로 사용할 수 있습니다.

Figure 9.10 User Output

카메라는 Exposure Active 출력 신호를 제공합니다. Exposure Active 신호는 다음 그림과 같이 노출 시간이 시작되면 상승하고 노출 시간이 종료되면 하강합니다. 이 신호는 플래시의 트리거로 사용할 수도 있고, 특히 카메라 또는 촬영 대상이 움직이는 환경에서 매우 유용합니다. 일반적으로 카메라는 노출 과정을 진행하는 동안 움직이면 안 됩니다. Exposure Active 신호를 관찰하여 노출이 언제 진행되는지, 카메라가 언제 움직이면 안 되는지 확인할 수 있습니다.

Figure 9.11 Exposure Active Signal

9.14.1 Debounce

VP-31MC-26 H 카메라의 Debounce 기능을 사용하면 유효한 입력 신호와 무효한 입력 신호를 구분하여 유효한 입력 신호만 카메라에 공급할 수 있습니다. Debounce Time 을 설정하여 유효한 입력 신호로 판단할 입력 신호의 최소 High 또는 Low 유지 시간을 지정할 수 있습니다. 이때, 유효한 입력 신호가 카메라에 공급된 시점과 적용된 시점 사이에는 Debounce Time 만큼의 지연 시간이 발생합니다. Debounce Time 을 설정하면 아래 그림에서와 같이 설정 값보다 작은 High 및 Low 신호는 무효한 신호로 판단하여 무시됩니다.

Figure 9.12 Debounce

Debounce Time 관련 XML 파라미터는 다음과 같습니다.

XML Parameter		Value	Description
DigitallOControl	DeheuneeTime	0 – 1,000,000 μs	마이크로세컨드 단위로 Debounce 시간 설정
	Debounce nine		(Default: 0.5 μs)

 Table 9.19
 XML Parameter related to Debounce Time

9.15 Timer Control

Line Source 를 Timer0Active 로 설정하면 카메라는 Timer 를 사용하여 출력 신호를 내보낼 수 있습니다. VP-31MC-26 H 카메라는 Frame Active, Exposure Active 이벤트 또는 외부 트리거 신호를 Timer 의 소스 신호로 사용할 수 있습니다.

Timer 관련 XML 파라미터는 다음과 같습니다.

XML Pa	rameters	Value	Description
	TimerDuration	1 – 60,000,000 µs	Timer Trigger Activation 을 Rising/Falling Edge 로 설정한 경우 Timer 출력 신호의 주기를 지정
	TimerDelay	0 – 60,000,000 µs	Timer 출력 신호를 출력하기 전에 적용할 지연 시간 지정
	TimerReset	-	Timer를 초기화하고 다시 시작
		TimerIdle	Timer 가 대기 상태임을 표시
	TimerStatus	TimerTriggerWait	Timer 가 트리거 신호를 기다리고 있는 상태임을 표시
		TimerActive	Timer 가 활성 상태임을 표시
		Off	Timer 출력 신호 해제
CounterAnd	TimerTrigger Source	ExposureActive	현재 노출 시간을 Timer 출력 신호의 소스 신호로 사용
TimerControl		FrameActive	한 프레임의 readout 구간을 Timer 출력 신호의 소스 신호로 사용
		Line0	외부 트리거 신호를 Timer 출력 신호의 소스 신호로 사용
		RisingEdge	선택한 트리거 신호의 상승 에지를 Timer 출력 신호 트리거로 작동하도록 지정
	TimerTrigger	FallingEdge	선택한 트리거 신호의 하강 에지를 Timer 출력 신호 트리거로 작동하도록 지정
	Activation	LevelHigh	선택한 트리거 신호가 High 구간일 때 Timer 출력 신호가 유효하도록 지정
		LevelLow	선택한 트리거 신호가 Low 구간일 때 Timer 출력 신호가 유효하도록 지정

 Table 9.20
 XML Parameters related to Timer Control

예를 들어, Timer Trigger Source 를 Exposure Active 로 설정하고, Timer Trigger Activation 을 Level High 로 설정한 경우에는 다음과 같이 Timer 가 작동합니다.

- 1. Timer Trigger Source 파라미터로 설정한 소스 신호가 공급되면 Timer 는 작동을 시작합니다.
- 2. Timer Delay 파라미터로 설정한 지연 시간이 시작된 후 만료됩니다.
- 3. 지연 시간이 만료되면 소스 신호의 High 구간만큼 Timer 신호가 상승합니다.

* Timer Trigger Activation is set to Level High.

9.16 Cooling Control

카메라의 후면에는 팬이 장착되어 있고, 카메라 내부에는 Thermoelectric Peltier 가 장착되어 센서 온도를 조절할 수 있습니다. 팬 및 Peltier 의 작동 여부를 설정할 수 있고, 온도 설정에 따라서 Peltier 가 작동하도록 설정할 수도 있습니다. Cooling Control 관련 XML 파라미터는 다음과 같습니다.

XML Parameters		Value	Description
	TargetTemperature	-10℃ - 80℃	Peltier Operation Mode 파라미터를 On 으로
	largertemperature		설정한 경우 Peltier 작동 온도
	FanOnarationMada	Off	Fan 작동 해제
CoolingControl	FanOperationwode	On	Fan 작동 설정
CoolingControl	FanSpeed	-	현재 Fan RPM 확인
		Off	Thermoelectric Peltier 작동 해제
	PeltierOperationMode	On	Target Temperature 파라미터에 설정한 온도
			이상에 도달하면 Thermoelectric Peltier 작동

Table 9.21 XML Parameters related to Cooling Control

9.17 Temperature Monitor

카메라에는 내부 온도를 모니터하기 위한 센서 칩이 내장되어 있어서 실시간으로 온도를 확인할 수 있습니다. 카메라 내부 온도 관련 XML 파라미터는 다음과 같습니다.

XML Parameters		Value	Description
DeviceControl	DeviceTemperatureSelector	Sensor	온도 측정 위치를 영상 센서로 설정
	Device remperatureSelector	Mainboard	온도 측정 위치를 메인 보드로 설정
	DeviceTemperature	-	섭씨 단위로 온도 표시

 Table 9.22
 XML Parameters related to Device Temperature

9.18 Status LED

카메라 후면에는 카메라의 작동 상태를 알려주기 위한 LED 가 있습니다. LED 의 상태와 그에 해당하는 카메라 상태는 다음과 같습니다.

Status LED	Description
Steady Red	카메라 초기화 안 됨
Fast Flashing Green	영상 데이터 전송 중임

Table 9.23Status LED

9.19 Test Pattern

카메라의 정상적인 작동 여부를 확인하기 위해 영상 센서로부터 나오는 영상 데이터 대신 내부에서 생성한 테스트 패턴을 출력하도록 설정할 수 있습니다. 테스트 패턴은 모두 네 가지가 있으며, 각각 가로 방향으로 값이 다른 이미지(Grey Horizontal Ramp), 대각 방향으로 값이 다른 이미지(Grey Diagonal Ramp), 대각 방향으로 값이 다르고 움직이는 이미지(Grey Diagonal Ramp Moving), 그리고 센서에서 출력하는 가로 방향으로 값이 다른 이미지(Sensor Specific)입니다. 테스트 패턴 관련 XML 파라미터는 다음과 같습니다.

XML Parameter		Value	Description
	TestPattern	Off	Test Pattern 기능 해제
		GreyHorizontalRamp	Grey Horizontal Ramp 로 설정
ImagaEarmatControl		GreyDiagonalRamp	Grey Diagonal Ramp 로 설정
InageronnaiControl		GreyDiagonalRampMoving	Grey Diagonal Ramp Moving 으로 설정
		Como o construition	센서에서 제공하는 Test Pattern 으로
		SensorSpecific	설정

 Table 9.24
 XML Parameter related to Test Pattern

Figure 9.15 Grey Diagonal Ramp

Figure 9.16 Grey Diagonal Ramp Moving

카메라의 해상도에 따라서 출력되는 Test Pattern 의 영역이 달라지므로 영상이 다르게 보일 수 있습니다.

9.20 Reverse X

영상의 가운데 중심 축을 기준으로 영상의 좌우를 뒤집는 기능입니다. 이 기능은 카메라의 모든 작동 모드에서 적용 가능합니다. Reverse X 관련 XML 파라미터는 다음과 같습니다.

XML Parameter		Value	Description
ImageFormatControl	ReverseX	FALSE	Reverse X 기능 해제
		TRUE	영상의 좌우를 뒤집습니다.

 Table 9.25
 XML Parameter related to Reverse X

Figure 9.18 원본 영상

Figure 9.19 Reverse X 영상

9.21 ReverseY

영상의 가운데 중심 축을 기준으로 영상의 상하를 뒤집는 기능입니다. 이 기능은 카메라의 모든 작동 모드에서 적용 가능합니다. Reverse Y 관련 XML 파라미터는 다음과 같습니다.

XML Parameter		Value	Description
ImageFormatControl	ReverseY	FALSE	Reverse Y 기능 해제
		TRUE	영상의 상하를 뒤집습니다.

 Table 9.26
 XML Parameter related to Reverse Y

Figure 9.20 원본 영상

Figure 9.21 Reverse Y 영상

Reverse Y 기능을 사용할 때, 카메라의 FFC 보정 데이터를 다시 생성해야 합니다. 컬러 카메라에서 Pixel Format 파라미터를 Bayer 로 설정하고 Reverse Y 기능을 사용하면 컬러 필터의 정렬 규칙이 변경됩니다.

9.22 Device User ID

카메라에 사용자 정의 정보를 16byte 까지 입력할 수 있습니다. Device User ID 관련 XML 파라미터는 다음과 같습니다.

XML Parameter		Description		
DeviceControl	DeviceUserID	사용자 정의 정보 입력(16byte)		

Table 9.27 XML Parameter related to Device User ID

9.23 Device Reset

카메라를 물리적으로 Reset 하여 전원을 껐다 켭니다. Device Reset 관련 XML 파라미터는 다음과 같습니다.

XML Parameter		Description		
DeviceControl	Device Reset	물리적 Reset 수행		

 Table 9.28
 XML Parameter related to Device Reset

9.24 Field Upgrade

카메라는 필드에서 카메라를 분해하지 않고 Camera Link 인터페이스를 통해 Firmware 와 FPGA 로직을 업그레이드하는 기능을 제공합니다. 자세한 변경 방법은 <u>Appendix B</u>를 참조하십시오.

9.25 User Set Control

사용자는 카메라 설정을 카메라 내부의 Flash 영역에 저장하거나 다시 불러올 수 있습니다. 저장 영역은 두 개를 지원하고 Load 영역은 세 개를 지원합니다. User Set Control 관련 XML 파라미터는 다음과 같습니다.

XML Parameters		Value	Description
		Default	카메라 설정을 Factory Default Settings 로 선택
	UserSetSelector	UserSet1	카메라 설정을 UserSet1 로 선택
		UserSet2	카메라 설정을 UserSet2 로 선택
	LloorSotl ood		User Set Selector 에서 선택한 사용자 설정을 카메라에
	UserSeiLoad	-	Load
LloorSotControl	UserSetSave	-	User Set Selector 에서 선택한 영역에 현재의 카메라
UserSetControl			설정을 저장
			• 단, Default 영역은 Factory Default Settings 영역으로
			Load 만 가능합니다.
		Default	카메라 Reset 시 Factory Default Settings 적용
	UserSetDefault	User Set1	카메라 Reset 시 UserSet1 적용
		User Set2	카메라 Reset 시 UserSet2 적용

 Table 9.29
 XML Parameters related to User Set Control

Default 영역에 저장된 카메라 설정 값은 카메라의 작업 영역으로 불러올 수는 있지만 설정 값을 변경할 수는 없습니다. 카메라의 전원을 껐다 켜거나 카메라를 reset 하면 카메라의 작업 영역에서 설정한 값은 없어집니다. 작업 영역의 현재 설정 값을 reset 한 후에도 사용하려면 설정 값을 사용자 영역 중 하나에 저장해야 합니다.

Figure 9.22 User Set Control

9.26 Sequencer Control

VP-31MC-26 H 카메라에서 제공하는 Sequencer Control 을 통해 'Sequencer Set'라고 하는 서로 다른 파라미터 설정 값을 연속된 영상 획득에 적용할 수 있습니다. 영상을 획득할 때, 하나의 Sequencer Set 를 적용한 다음 다른 Sequencer Set 를 적용합니다. 이를 통해 영상을 획득하는 동안 변하는 영상 획득 조건에 빠르게 대응할 수 있습니다. 예를 들면, 조명이 바뀌면 영상 획득 조건이 변경됩니다. User Set Control 기능을 사용하여 설정한 Sequencer Set 를 카메라의 비휘발성 메모리에 저장할 수 있습니다. 그러면 카메라를 껐다 켜거나 reset 한 후에 **User Set Default** 설정 값에 따라서 Sequencer Set 를 사용할 수 있습니다. 각 Sequencer Set 는 0 부터 31 까지의 색인 번호로 확인할 수 있고, 최대 32 개의 다른 Sequencer Set 를 지정할 수 있습니다.

VP-31MC-26 H 카메라에서는 Flat Field 보정 데이터만 Sequencer Set 에 적용할 수 있습니다. Sequencer Control 관련 XML 파라미터는 다음과 같습니다.

XN	IL Parameters	Value	Description
	SaguanaarMada	Off	Sequencer 해제
	Sequencermode	On	Sequencer 설정
	SequencerConfigurationMode	Off	Sequencer 구성 모드 해제
	SequencerConfigurationMode	On	Sequencer 구성 모드 설정
SequencerControl	SequencerSetSelector	0 – 31	설정할 Sequencer Set 선택
	SequencerSetActive	-	현재 작동하는 Sequencer Set 의 색인 번호
	SequencerSerActive		표시 (0-31)
	SequencerSetCount	1 – 32	적용할 Sequencer Set 의 개수
	SequencerReset	-	Sequencer Set 0 단계로 복귀

 Table 9.30
 XML Parameters related to Sequencer Control

Sequencer Set 를 적용하려면 Trigger Mode 파라미터를 On 으로 설정해야 합니다.

Use Case – Flat Field 보정 데이터 4개를 Sequencer Set로 적용

예를 들어, LCD 패널을 검사하기 위해 White, Green, Red 및 Blue 픽셀에 최적화된 4개의 Flat Field 보정 데이터를 다음과 같이 서로 다른 Sequencer Set 로 적용할 수 있습니다.

- 1. Sequencer Mode 파라미터를 Off 로 설정합니다.
- 2. Sequencer Configuration Mode 파라미터를 On 으로 설정합니다.
- Sequencer Set Selector 파라미터를 0 으로 설정하고, Flat Field Data Selector 파라미터를 0 으로 설정합니다. 그런 다음, Sequencer Set Selector 파라미터를 1, 2, 3 으로 선택하고, Flat Field Data Selector 파라미터를 1, 2, 3 으로 각각 설정합니다.
- 4. Sequencer Set Count 파라미터를 4 로 설정합니다.
- 5. Sequencer Configuration Mode 파라미터를 Off 로 설정한 다음 Sequencer Mode 파라미터를 On 으로 설정합니다.

Figure 9.23 Sequencer Diagram (Use Case)

Τ

	•	설정한 Sequencer Set 를 저장하려면 User Set Control 기능을 사용하여 카메라					
i		비휘발성 메모리에 저장하십시오. 자세한 내용은 <u>9.25 User Set Control</u> 을					
		참조하십시오.					
	•	Sequencer를 수행하는 동안 언제라도 Sequencer Reset 파라미터를 실행하면					
		Sequencer Set 0 단계로 돌아갑니다.					

10 Camera Configuration

10.1 시리얼 통신

카메라의 모든 설정은 Camera Link의 RS-644 시리얼 통신을 통해 이루어집니다. 터미널을 이용하거나 사용자 애플리케이션에서 직접 제어하고자 할 경우 다음과 같은 통신 설정으로 제어할 수 있습니다.

- Baud Rate: 115200 bps
- Data Bit: 8 bit
- Parity Bit: No parity
- Stop Bit: 1 stop bit
- Flow Control: None

10.2 파라미터 실제 적용 시간

사용자가 파라미터를 설정하면 해당 파라미터가 실제 적용되는 시간은 파라미터의 종류 및 카메라의 작동 상태에 따라서 다릅니다. Exposure Time 파라미터를 제외한 모든 파라미터는 아래 그림과 같이 readout 을 시작하기 전 REQ_Frame 신호가 상승할 때 적용되어 카메라 설정을 변경합니다. Exposure Time 파라미터를 설정하면 노출을 시작할 때 노출 시간 설정이 변경되어 적용됩니다.

Trigger Mode 파라미터를 On 으로 설정하고 카메라를 작동할 경우에는 트리거 신호를 공급하기 전에 파라미터를 설정하여 영상 출력과 해당 파라미터의 동기화를 유지해야 합니다.

현재 카메라의 작동 상태를 확인하기 어려운 Free-Run 모드에서는 파라미터를 변경하더라도 변경된 파라미터가 적용되지 않은 영상을 최대 2장 획득할 수도 있습니다.

Figure 10.1 파라미터 실제 적용 시간

10.3 Configurator

Configurator 는 Vieworks Camera Link 카메라를 컨트롤하기 위해 제공되는 샘플 애플리케이션입니다. 사용자는 Configurator 를 통해 편리하게 카메라 파라미터를 변경하거나 카메라를 제어할 수 있습니다.

10.3.1 Configurator 시작하기

사용자 컴퓨터에 카메라를 연결(6. 카메라 연결 방법 참조)한 후 다음 절차에 따라서 Configurator 를 실행할 수 있습니다.

- 1. 카메라의 전원을 켠 후 Configurator.exe 파일을 실행하면 Camera Scan 창이 표시됩니다.
- 이때 Configurator 는 카메라 연결 여부를 확인하고 연결된 카메라가 있으면 모델명을 화면에 표시합니다.
- 화면에 표시된 모델명을 마우스 오른쪽 버튼으로 클릭한 다음 Add to List 메뉴를 클릭합니다.
 XML 기반 컨트롤을 지원하는 Vieworks Camera Link 카메라를 목록에 추가하면 새로운 버전의 Configurator 로 카메라를 설정할 수 있습니다.

Came	Camera Scan ×				
VIEWOCKS Imaging Expert					
	PORT		CAMERA		
Xcel	era-CL+_PX8_1_5	Serial	VP-31MC-M26		
			Add to list		
			Delete from list		
	SCAN PORT		InterfaceType : FrameGrabber v		
	SELECT PORT		EXIT		

Figure 10.2 Add to list in the Camera Scan window

4. 화면에 표시된 모델명을 더블 클릭하면 Device Property 창과 Configurator Plus 창이 나타납니다.
Device Property 창에는 카메라 파라미터를 설정할 수 있는 컨트롤이 표시됩니다.

evice	Properties		_	ņ
ź	Beginner 🔹	2		
Ro	ot			
Ξ	DeviceControl			
	DeviceVendorName		VIEWORKS	
	DeviceModelName		VC-31MC-M26	
	DeviceManufacturerInfo			
	DeviceVersion		M:0.6.3 DBG F:0.1.6	
	DeviceUserID		0	
	DeviceSFNCVersionMajor		2	
	DeviceSFNCVersionMinor		0	
	DeviceSFNCVersionSubMinor		0	
	DeviceTLType		CameraLink	
	DeviceTLVersionMajor		1	
	DeviceTLVersionMinor		0	
	DeviceTLVersionSubMinor		0	
	DeviceLinkSelector		0	
Ξ	ImageFormatControl			
	Width		6464	
	Height		4852	
	OffsetX		0	
	OffsetY		0	
	MultiRoiControl			
	MultiRoiSelector		Region0	
	PixelFormat		Mono12	
	TestPattern		Off	
Ξ	AcquisitionControl			
	AcquisitionMode		Continuous	
	AcquisitionStart		Execute	
	AcquisitionStop		Execute	
	AcquisitionFrameCount		10	
	AcquisitionFrameRate		10.630960	
	AcquisitionLineRate		52325.582031	
	TriggerSelector		ExposureStart	
	TriggerMode		Off	
	TriggerSoftware		Execute	
	TriggerSource		Line0	
	TriggerActivation		RisingEdge	
	ExposureMode		Timed	
	ExposureTime		9995.111328	
Ξ	FrameAveragingControl			
Ξ	EventControl			
	EventTestData			
Ξ	DigitalIOControl			
Ξ	CounterAndTimerControl			
-	A 1 6 4 1			

Figure 10.3 Device Property

Configurator Plus 창에서는 Device Property 및 Device Maintenance 창을 표시할 수 있습니다.
 Device Maintenance 창에서는 Defective Pixel Map 을 다운로드하거나 카메라의 MCU, FPGA 및 XML 파일을 업그레이드할 수 있습니다.

Configurator Plus – 🗆 🗙		
Tools(T)		
Device Property(P)	Device Maintenance	×
Device Maintenance(M)	PKG Defect FFC Script	
Send	Defect File Information 1. File Path 2. File Size	Defect
Output	1. Camera Defect: 2. Download Defect: 	
Close	Camera Defect Download Download Upload to PC	D %

Figure 10.4 Configurator Plus 및 Device Maintenance

10.4 Command List

VP-31MC-26 H 카메라에서 제공하는 기능은 다음 명령어로도 설정할 수 있습니다.

Command	Syntax	Return Value	Description	
Help	help	String	모든 명령어 표시	
Set ROI Offset X	sox n	ОК	ROI 시작 지점의 X 좌표	
Get ROI Offset X	gox	n	n: X axis offset	
Set ROI Offset Y	soy n	ОК	ROI 시작 지점의 Y 좌표	
Get ROI Offset Y	goy	n	n: Y axis offset	
Set Image Width	siw n	ОК	ROI 폭 설정	
Get Image Width	giw	n	n: Width 값	
Set Image Height	sih n	ОК	ROI 높이 설정	
Get Image Height	gih	n	n: Height 값	
Set Region Selector	srs n	ОК	Multi-ROI 설정 시 설정할 ROI 선택	
Get Region Selector	grs	n	n: ROI 번호(0 – 7)	
Set Region Mode	src 01	ОК 0 1	Multi-ROI 설정 시 선택한 ROI 설정/해제	
Get Region Mode			0: ROI 해제	
	gic		1: ROI 설정	
Set Region Offset X			Multi-ROI 설정 시 선택한 ROI와 원점과의	
		n	수평 Offset 설정	
	91X		n: X axis offset	
Sat Pagian Offsat V	cru n	OK	Multi-ROI 설정 시 선택한 ROI와 원점과의	
Get Region Offset V	Siy II	DK n	수직 Offset 설정	
Get Region Oliset f	gry	n	n: Y axis offset	
Set Region Width	srw n	ОК	Multi-ROI 설정 시 선택한 ROI의 폭 설정	
Get Region Width	grw	n	n: Width 값(Setting range: 16 – Max.)	
Set Region Height	srh n	ОК	Multi-ROI 설정 시 선택한 ROI의 높이 설정	
Get Region Height	grh	n	n: Height 값(Setting range: 4 – Max.)	

Table 10.1 Command List #1

VIEWORKS

Command	Syntax	Return Value	Description
Set Binning Selector	shns 011	ОК 0 1	Binning 엔진 선택
Get Binning Selector	abns		0: Sensor
	yuna		1: Logic
			Binning Vertical Mode 에 따라서 자동으로
Set Binning Horizontal Mode	sbhm 0 1	ОК	변경
Get Binning Horizontal Mode	gbhm	0 1	0: Sum
			1: Average(Not available)
Set Binning Horizontal	sbh 1 2	ОК	Binning Vertical 에 따라서 자동으로 변경
Get Binning Horizontal	gbh	1 2	1 2: ×1, ×2
			Binning Vertical 에 적용할 Binning 모드
Set Binning Vertical Mode	sbvm 0 1	ОК	설정
Get Binning Vertical Mode	gbvm	0 1	0: Sum
			1: Average(Not available)
Set Binning Vertical	sbv 1 2	ОК	수직 방향으로 더할 픽셀 수
Get Binning Vertical	gbv	1 2	1 2: ×1, ×2
			Test Image 설정
			0: Test Image 기능 해제
Set Test Image	sti 0 1 2 3 16	ОК 0 1 2 3 16	1: Grey Horizontal Ramp 로 설정
Get Test Image	gti		2: Grey Diagonal Ramp 로 설정
			3: Grey Diagonal Ramp Moving 으로 설정
			16: 센서에서 제공하는 Test Image 로 설정
			Camera Link Tap Geometry 설정
Set Camera Link Tan Geometry	sta 21/18110	OK	2: 1X2-1Y (2 Tap)
Get Camera Link Tap Geometry		21/18110	4: 1X4-1Y (4 Tap)
Get Camera Link Tap Geometry	gig	21410110	8: 1X8-1Y (8 Tap)
			10: 1X10-1Y (10 Tap)
Set Camera Link Clock Selector		0ĸ	Camera Link Pixel Clock Speed 설정
Cet Camera Link Clock Selector	sccs 0 1 gccs		0: 85 MHz
Get Gamera Link Glock Selector			1:65 MHz

 Table 10.2
 Command List #2

Command	Syntax	Return Value	Description
			Pixel Format 설정
Set Data Bit	sdb 8 10 12 gdb	ОК	8: 8 bit
Get Data Bit		8 10 12	10: 10 bit
			12: 12 bit
Sat Defect Correction	sde 01	OK	Defect Pixel Correction 기능 설정
Get Defect Correction			0: Defect Pixel Correction 기능 해제
	gue		1: Defect Pixel Correction 기능 활성화
Set Horizontal Flin	shf 01	OK	Reverse X (Horizontal Flip) 기능 설정
Get Horizontal Flip	shi oji	011	0: Reverse X 기능 해제
	giii		1: Reverse X 기능 활성화
Set Vertical Flin	svf 01	OK	Reverse Y (Vertical Flip) 기능 설정
	SVI UII	0 1	0: Reverse Y 기능 해제
	gvi		1: Reverse Y 기능 활성화
Acquisition Start	ast	ОК	영상 획득 시작
Acquisition Stop	asp	ОК	영상 획득 종료
			Acquisition Mode 설정
Set Acquisition Mode	sam 0 1 2	ОК 0 1 2	0: Continuous
Get Acquisition Mode	gam		1: Single Frame
			2: Multi-Frame
Sat Acquisition Frame Count	aafa n	OK	Acquisition Mode 를 Multi-Frame 으로
Set Acquisition Frame Count	satc n	OK	설정한 경우 획득할 Frame 수 설정
Get Acquisition Frame Count	gaic		n: 1 - 255
Sat Frama Data	ofr n	OK	Trigger Mode 를 Off 로 설정한 경우
Cot Frame Rate	SII II		Exposure Start 트리거를 생성하는 비율
Gel Flame Rale	gii		설정
			현재 카메라의 영상 획득 과정 여부 확인
Get Acquisition Status	gast	0 1	0: 영상 획득 과정을 진행하지 않음
			1: 영상 획득 과정 진행 중

Table 10.3 Command List #3

Command	Syntax	Return Value	Description
Set Trigger Mede	stm 011	OK	Trigger Mode 설정
Get Trigger Mode	atm		0: Trigger Mode Off (Free run 모드)
	9011		1: Trigger Mode On
			Trigger Mode 를 On 으로 설정한 경우
			소스 신호 지정
Set Trigger Source	ata 2110111119122	OK	3: Software
Cet Trigger Source	sts 5 10 14 10 22	2110111110122	10: User Output0
Get mgger Source	gis	3 10 14 10 22	14: CC1
			18: Timer0 Active
			22: Line0
Generate SW Trigger	nst	ОК	Software 트리거 신호 생성
			Trigger Mode 를 On 으로 설정한 경우
Set Trigger Activation	sta 0 1	ОК	소스 신호의 Activation 모드 설정
Get Trigger Activation	gta	0 1	0: Falling Edge
			1: Rising Edge
Set Exposure Mode	sem/ses 011	OK	Exposure Mode 설정
Get Exposure Mode	sem/ses 0 1		0: Timed
	gennges		1: Trigger Width
			Short Exposure Mode 설정
Set Short Exposure Mode	ssem 0 1 2	ОК	0: Off (Normal Exposure Mode)
Get Short Exposure Mode	gsem	0 1 2	1: Super Short
			2: Ultra Short
			노출 시간 설정
Set Exposure Time	set n	OK	n: 마이크로세컨드 단위의 노출 시간
	get	n	• Normal Exposure Mode: 7.84 μ s – 60s
	ger	11	• Super Short: 7.84 μ s – 60 s
			 Ultra Short: 2.37 μs – 32.27 μs
			현재 Exposure Offset 확인
Get Exposure Offset		n	 Normal Exposure Mode: 30.06 μs
	geo		• Super Short: 2.80 μ s
			 Ultra Short: 0.03 μs

 Table 10.4
 Command List #4

Command	Syntax	Return Value	Description
Set Black Level	sbl n	ОК	Black Level 설정
Get Black Level	gbl	n	n: Black Level 값(Setting range: 0 – 255)
Set Digital Gain	sdg n	ок	디지털 Gain 값 설정
Get Digital Gain	gdg	n	n: Gain 값(Setting range: 1× – 32×)
Generate PRNU Data	gpd	ок	PRNU 데이터 생성
Sat PRNU Data Salactor	ondo 0111212	OK	PRNU 데이터 영역 선택
Cet PRNU Data Selector	ands	0111213	0: Default 영역
	gpus	0111213	1-3: 사용자 설정 영역
Save PRNU Data	and	OK	생성한 PRNU 보정 데이터를 선택한
	spu	ÖK	PRNU 데이터 영역에 저장
Load PRNU Data	Ind	OK	비휘발성 메모리에 저장된 PRNU 보정
	ipu	ÖK	데이터를 휘발성 메모리로 불러옴
		ок	Flat Field Generator 실행
	gfd none 0 n		none/0: 보정 후 영상의 목표 값을
Generate Flat Field Data			자동 설정
			n: 보정 후 영상의 목표 값을 직접
			설정(1 – 4095 @ 12 bit)
Set Flat Field Data Selector	sfds n	ок	Flat Field 보정 데이터 영역 선택
Get Flat Field Data Selector	gfds	n	n:0-23(사용자 설정 영역)
Save Flat Field Data	sfd	ок	생성한 Flat Field 보정 데이터를 선택한
	510		Flat Field 보정 데이터 영역에 저장
l oad Elat Field Data	lfd	OK	비휘발성 메모리에 저장된 Flat Field
			보정 데이터를 휘발성 메모리로 불러옴
Set Flat Field Correction	efc 01	OK	Flat Field Correction 기능 설정
Get Flat Field Correction	afc	011	0: Flat Field Correction 기능 해제
	gie	011	1: Flat Field Correction 기능 활성화
Set Fan Mode	sfm 011	OK	Fan 작동 모드 설정
Get Fan Mode	gfm	0 1	0: Fan Off
			1: Fan On
Set Peltier Operation Mode	sntm 011	OK	Thermoelectric Peltier 작동 모드 설정
Get Peltier Operation Mode	gptm	0 1	0: Peltier Off
			1: Peltier On

Table 10.5 Command List #5

Command	Syntax	Return Value	Description
Set Target Temperature	ett n	OK	Peltier 작동 모드를 On 으로 설정한
	gtt		경우 Peltier 작동 온도 설정
		П	n: -10℃ – 80℃
Get Fan RPM	gfrpm	String	Fan RPM 표시
Set Sequencer Mode	ssam 011	OK	Sequencer 모드 설정
Get Sequencer Mode	asam	011	0: Sequencer Mode 해제
	ysqiii		1: Sequencer Mode 활성화
Sat Sequencer Configuration Mode	ssacm 011	OK	Sequencer 구성 모드 설정
Get Sequencer Configuration Mode	asgem		0:Sequencer 구성 모드 해제
	gsqcm	υμ	1:Sequencer 구성 모드 활성화
Set Sequencer Set Selector	ssqss n	ОК	설정할 Sequencer Set 선택
Get Sequencer Set Selector	gsqss	n	n: Sequencer Set 색인 번호(0 – 31)
Set Sequencer Set Count	ssqsc n	ОК	적용할 Sequencer Set 의 개수 설정
Get Sequencer Set Count	gsqsc	n	n: 1 – 32
Cat Saguanaar Sat Aativa	gsqsa	n	현재 작동하는 Sequencer Set 의 색인
Get Sequencer Set Active			번호 표시 (n:0-31)
Reset Sequencer	rsq	ОК	Sequencer Set 0 단계로 복귀
			Frame Averaging 모드 설정
Set Frame Averaging Mode	sfam 0 1 2	ОК	0: Off
Get Frame Averaging Mode	gfam	0 1 2	1: Average
			2: Sum
Set Frame Averaging Count	sfac n	ОК	Frame Averaging 에 사용할 영상 수 설정
Get Frame Averaging Count	gfac	n	n: 2 – 16
Depart Frome Averaging	rfo	OK	Frame Averaging 기능을 초기화하고
Reset Frame Averaging	rfa	OK	다시 시작
			Frame Averaging 기능 상태 표시
Cat Frame Averaging Status	erfe e	01412	0: Disabled
Get Frame Averaging Status	gias	0 1 2	1: Idle
			2: Busy
			Frame Averaging 기능에 사용된 영상 수
Get Frame Averaging Current Count	gfacc	n	표시
			n: 2 – 16

Table 10.6 Command List #6

Command	Syntax	Return Value	Description
Set Line Selector	sing 01	0ĸ	컨트롤 입/출력 단자 선택
Get Line Selector			0: Line0
	gins	0 1	1: Line1
			선택한 컨트롤 입/출력 단자의 입/출력
Cot Line Mode	alam	011	모드 확인
Get Line Mode	giinn	011	0: Input
			1: Output
			입/출력 단자 소스 신호 설정
			0: Off
Set Line Source	slnc 0 4 6 10 18	ОК	4: Frame Active
Get Line Source	glnc	0 4 6 10 18	6: Exposure Active
			10: User Output0
			18: Timer0 Active
Set Line Inverter	almi 011	OK	Line 출력 신호 반전 여부 설정
Set Line Inverter			0:Line 출력 반전 해제
	gin		1:Line 출력 반전
Set User Output Value		OK	사용자 설정 값 설정
	guov	0 1	0: Bit 를 Low 로 설정
			1: Bit 를 High 로 설정
Sat Dahaunca Tima	sdbt n	OK	Debounce 시간 설정
Get Debounce Time	subl n	UK .	n: 마이크로세컨드 단위의 Debounce
	gubt	11	시간(0-1,000,000 µs)
Set Timer Duration	stdu n	ОК	Timer 출력 신호의 주기 설정
Get Timer Duration	gtdu	n	n: 1 – 60,000,000 µs
Set Timer Delay	stdl n	ОК	Timer 출력 신호의 지연 시간 설정
Get Timer Delay	gtdl	n	n: 0 – 60,000,000 µs
Reset Timer	rtmr	ОК	Timer를 초기화하고 다시 시작
			Timer 기능 상태 표시
Cat Timor Status	atot	01112	0: Timer Idle
Get Hiller Status	gisi	0[1]2	1: Timer Trigger Wait
			2: Timer Active

Table 10.7 Command List #7

Command	Syntax	Return Value	Description
Set Timer Trigger Source Get Timer Trigger Source	stts 0 4 6 22 gtts	OK 0 4 6 22	Timer 출력 신호의 소스 신호 설정 0: Off 4: Frame Active 6: Exposure Active 22: Line0
Set Timer Trigger Activation Get Timer Trigger Activation	stta 0 1 2 3 gtta	ОК 0 1 2 3	Timer 출력 신호의 Activation 모드 설정 0: Falling Edge 1: Rising Edge 2: Level Low 3: Level High
Set AWB Offset X	swx n	ОК	데이터 ROI와 원점과의 수평 Offset
Get AWB Offset X	gwx	n	절성
Set AWB Offset Y	swy n	OK	네이너 ROI와 원섬과의 수식 Offset
	gwy	n	실상
Set AWB Width	sww n	UK	데이터 ROI의 폭 설정
	gww	n	
Set AWB Height Get AWB Height	swh n gwh	n n	데이터 ROI의 높이 설정
Set RGB Gain Get RGB Gain	srg r g b n grg r g b	OK n	컬러 픽셀의 강도 설정 r g b: Red / Green / Blue 픽셀 n: Gain 값 (1.0× ~4.0×)
Auto White Balance	arg	ОК	Auto White Balance 한 번 실행
Get Model Name	gmn	String	카메라 모델 이름 표시
Get MCU Version	gmv	String	카메라 MCU 버전 표시
Get FPGA Version	gfv	String	카메라 FPGA 버전 표시
Get Serial Number	gsn piece	String	카메라 시리얼 번호 표시
Get Current Temperature	gct	String	카메라 내부 온도를 섭씨 단위로 표시
Reset Hardware	rst	-	카메라 Reset 실행

Table 10.8	Command List #8

Command	Syntax	Return Value	Description
		ок	카메라 설정 값 불러오기
Load Config From	lcf 0 1 2		0: Factory Default Setting 을 카메라에 Load
Load Conng. From			1: User 1 Setting 을 카메라에 Load
			2: User 2 Setting 을 카메라에 Load
			카메라 설정 값 저장
Save Config. To	sct 1 2	ОК	1: User 1 Setting 에 저장
			2: User 2 Setting 에 저장
			카메라 Reset 시 적용할 설정 값 지정
Set Config. Initialization	sci 0 1 2	ОК	0: Factory Default Setting
Get Config. Initialization	gci	0 1 2	1: User 1 Setting
			2: User 2 Setting

Table 10.9 Command List #9

11 제품 동작 이상 확인 및 조치

제품이 이상 작동을 하면 아래 사항을 점검해 주시기 바랍니다.

- 화면에 아무것도 보이지 않을 경우
 - □ 케이블 연결이 제대로 되었는지 확인하십시오.
 - □ 전원 공급이 제대로 이루어지는지 확인하십시오.
 - □ 외부 트리거 입력 모드일 경우, 트리거가 제대로 입력되는지 확인하십시오.
- 화면이 선명하지 않을 경우
 - □ 렌즈나 Glass 에 먼지가 묻어 있는지 확인하십시오.
 - 렌즈의 초점이 잘 맞는지 확인하십시오.
- 영상이 어둡게 나올 경우
 - □ 렌즈가 막혀 있는지 확인하십시오.
 - 노출 시간이 적절한 지 확인하십시오.
 - □ 조리개가 닫혀 있는지 확인하십시오.
 - □ Gain 값이 너무 작게 설정되어 있는지 확인하십시오.
- 카메라 동작이 이상하고 뜨거울 경우
 - □ 전원 연결이 제대로 되었는지 확인하십시오.
 - □ 카메라에서 연기가 나거나 비정상적인 발열 시 사용을 중지하십시오.
- 트리거 모드가 제대로 동작되지 않을 경우
 - □ Software 트리거 입력 설정이 제대로 되었는지 확인하십시오.
 - □ CC1 트리거 모드의 경우 Frame Grabber 의 CC1 설정이 제대로 되었는지 확인하십시오.
 - □ 외부 트리거 모드의 경우 케이블 연결이 제대로 되었는지 확인하십시오.
- 통신이 되지 않을 때
 - Camera Link 케이블 연결이 제대로 되었는지 확인하십시오.
 - 컴퓨터에 장착된 Camera Link Frame Grabber 에 카메라가 제대로 연결되어 있는지, 설정이 제대로 되었는지 확인하십시오.

품질보증서

제품명				보증기간
모델명				
구입일자	년	월	일	
보증기간	년	월	일	
고객주소:				성명
				연락처

	연락처	
판매처:	성명	
	연락처	

사후 봉사를 받으실 때

사용 설명서를 한 번 더 확인하고 고장이라 판단되면 고장 상태와 제품 정보를 명확히 기록하여 알려주십시오.

고장의 상태나 내용에 따라 유상과 무상으로 구분되며 아래의 고장 원인은 유상으로 처리됩니다.

- 사용자 취급 부주의에 의한 고장
- 정격 전원 이외의 전원 연결 시
- 사용자 임의로 분해 및 수리한 경우
- 재해에 의한 고장(화재, 침수, 낙뢰 등)

고장내용 기록

Appendix A Defective Pixel Map Download

- 엑셀에서 아래 왼쪽 그림처럼 Defective Pixel Map 데이터를 작성하고 CSV 파일(*.csv)로 저장합니다. 오른쪽 그림은 작성한 파일을 메모장에서 열었을 때의 모습입니다. 작성 시 적용되는 규칙은 다음과 같습니다.
 - '' 또는 '─'로 시작하는 라인은 주석으로 처리됩니다.
 - □ 각 행은 수평 좌표 값, 수직 좌표 값순으로 작성합니다.
 - □ 픽셀의 입력 순서는 무관합니다.

-	홈	삽입	비 페이	지레이어	바웃	수식
1	*	맑은	고딕		11 •	JÎ 7
붙여	넣기 🥑	가	가 간 -	.	3 - 가	* UKM JII
클립	보드 6			글꼴		
	D13	1	•	0	f_{x}	
4	А		В	С		D
1	: comme	ent li	ine			
2	come	nt li	ne			
3		Н	Y			
4	20:	11	3			
5	1	78	7			
6	- 3	52	8			
7	69	99	8			
8	20	58	10			
9	11:	12	10			
10	17:	13	12			
11	60	08	16			
12						
13	2					

파일(E)	편집(<u>E</u>)	서식(<u>0</u>)	보기(⊻)	도움말(<u>H</u>)
: comme	ent line	P,		
come	ent line	2,		
		H,Y		
2011,3				
178,7				
52,8				
699,8				
268,10				
1112,10)			
1713,12				
608,16				

- 2. Configurator 를 실행한 후 Configurator Plus > Tools > Device Maintenance 를 클릭하여 Device Maintenance 창을 엽니다.
- 3. Defect 탭을 선택하고 File Path 에서 다운로드할 csv 파일을 선택한 다음 Download 버튼을 클릭합니다.

Jevice	Maintenan	ce					~
PKG	Defect	FFC	Script				
						Defect	
Defec	t File Inform	nation					
1.1	File Path						
L	-1						
2.1	-ile Size						
L							
1. (Camera Def	ect:					
		- f h					
2.1	Jownioad D	erect:					
					0 %	1	
Came	ra Defect D	ownload					
			Download	Upland to DC	1		
			Downioad	opidad to PC			

- 다운로드가 완료되면 저장 과정을 시작합니다. 저장 과정이 진행되는 동안 전원이 분리되지 않도록 주의하십시오.
- 5. 다운로드가 완료되면 **OK** 버튼을 클릭하여 확인 창을 닫습니다.

Appendix B Field Upgrade

다음 절차에 따라서 카메라의 MCU, FPGA 및 XML 파일을 업그레이드할 수 있습니다.

- Configurator 를 실행한 후 Configurator Plus > Tools > Device Maintenance 를 클릭하여 Device Maintenance 창을 엽니다.
- 2. PKG 탭을 선택하고, File Path 버튼을 클릭한 다음 MCU, FPGA 또는 XML 업그레이드 파일을 선택하고 Download 버튼을 클릭합니다.

Device Maintenance	×
PKG Defect FFC Script	
PKG	
1. File Path	
2. File Size	
1. Camera PKG:	
2. Developed DKC:	
2. Download PKG:	
0 %	
Camera PKG Download	

- 3. 업그레이드 파일의 다운로드가 진행되고 하단에 진행 상황이 표시됩니다.
- 4. 다운로드가 완료되면 OK 버튼을 클릭하여 확인 창을 닫습니다.

Vieworks Co., Ltd.

41-3, Burim-ro, 170beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do 14055 Republic of Korea Tel: +82-70-7011-6161 Fax: +82-31-386-8631

http://www.vieworks.com

 \bigcirc

vision@vieworks.com