VT series User Manual

VT-16K5X2-E300A-64 VT-16K5X2-H300A-256

한국어

책 머리에

이 매뉴얼은 ㈜뷰웍스의 서면 승인 없이는 전체 또는 일부를 복사, 복제, 번역 또는 그 어떠한 전자, 기계 읽기 가능한 형태로 출판될 수 없습니다.

이 매뉴얼은 ㈜뷰웍스의 통제하에 있지 않는 기타 업체로의 웹사이트 링크를 포함하고 있을 수도 있으며, ㈜뷰웍스는 링크된 그 어떠한 사이트에 대해서도 책임을 지지 않습니다. 또한, 출처를 미처 밝히지 못한 인용 자료들의 저작권은 원작자에게 있음을 밝힙니다.

틀린 부분이 없도록 하기 위해 최선의 노력을 다했지만, 혹시라도 있을 수 있는 오류나 누락에 대하여 ㈜뷰웍스는 일체의 책임을 지지 않습니다. 제품의 버전이나 실행되는 형태에 따라 사진이 다를 수도 있습니다. 사양이나 사진은 매뉴얼 제작 시점의 최신 자료에 기초하고 있으나, 예고 없이 변경될 수도 있습니다.

제품을 사용하기 전에

VT-16K5X2™를 구입해 주셔서 고맙습니다.

- 반드시, 매뉴얼을 읽어보신 후 제품을 사용하십시오.
- 반드시, 전문 엔지니어가 제품을 설치하고 최적화 작업까지 완료했는지 확인하십시오.
- 매뉴얼을 제품 사용 중 쉽게 볼 수 있는 장소에 보관하십시오.
- 이 매뉴얼은 사용자가 카메라에 대한 전문지식을 갖추었다는 전제하에서 작성되었습니다.

해당 제품

이 매뉴얼은 다음 제품의 사용자를 위하여 작성했습니다.

- VT-16K5X2-E300A-64
- VT-16K5X2-H300A-256

이 매뉴얼에 대하여

이 매뉴얼은 VT-16K5X2™의 카메라 사용자를 위해 작성되었습니다. 이 매뉴얼과 함께, 사용하시는 프레임그래버의 매뉴얼도 함께 참조하시기를 권장합니다.

이 매뉴얼의 규칙

이 매뉴얼에서는 사용자의 이해를 돕기 위해 표현 방식의 일관성을 최대한 유지했습니다.

표기 방식

이 매뉴얼에서는 다음의 표기 방식을 사용했습니다.

- 제품에서 인용한 메뉴명, 아이콘명 등은 이 매뉴얼의 맞춤법에 관계 없이 제품에 쓰인 대로 표기했습니다.
- 제품에서 인용한 메뉴명, 아이콘명 등은 이런 글꼴로 표기했습니다.
- 네모난 형태의 버튼명이나 키보드의 키(Key) 이름은 이런 글꼴 로 표기했습니다.

경고나 주의, 참고의 의미

이 매뉴얼에서는 경고와 주의, 참고, 세 가지 방식의 메시지를 사용했습니다.

용어 정의

이 매뉴얼에서는 사용자의 편의를 위해 일부 단어들을 특정한 의미로 지정하여 사용합니다. 이에 대해서는 다음 표를 참고하십시오.

용어	의미
서문	이 매뉴얼의 목차 앞에 있는 부분을 통칭
애플리케이션	응용 프로그램, application을 통칭
Vieworks Imaging Solution	카메라를 컨트롤하기 위해 뷰웍스에서 함께 제공하는 소프트웨어를 지칭
VIS	Vieworks Imaging Solution

매뉴얼 개정 이력

이 매뉴얼의 개정 이력은 다음과 같습니다.

버전	날짜	설명
1.0	2022-07-19	초안

목차

Chapter 1	1. 주의사항	17
Chapter 2	2. 보증범위	19
Chapter 3	3. 사용자 안내문	20
Chapter 4	4. 제품 구성	21
Chapter 5	5. 제품 규격	22
5.1	Overview	22
5.2	Specification	23
5.3	Camera Block Diagram	24
5.4	양자 효율	25
5.5	Mechanical Specification	26
	5.5.1 Camera Mounting 및 Heat Dissipation	26
Chapter 6	6. 카메라 연결 방법	27
6.1	센서 중심 조정에 대한 주의사항	27
6.2	Vieworks Imaging Solution 설치	27
Chapter 7	7. Camera Interface	28
7.1	General Description	28
7.2	CoaXPress 커넥터	29
	7.2.1 Micro-BNC 커넥터	29
7.3	전원 입력 단자	30
7.4	컨트롤 입출력 단자	31
7.5	Trigger/Direction Input Circuit	32
7.6	Strobe Output Circuit	32
Chapter 8	8. Acquisition Control	33
8.1	Acquisition Start/Stop 명령 및 Acquisition Mode	33
8.2	Line Start 트리거	33
	8.2.1 Trigger Mode	33
	8.2.2 External/CoaXPress 트리거 신호 사용하기	36
	8.2.3 Trigger Multiplier/Divider	37

8.3	허용 가능한 최대 Line Rate	
Chapter 9	. Camera Features	
9.1	Device Scan Type	
9.2	TDI Stages(Monochrome Only)	40
9.3	Scan Direction	41
9.4	Region of Interest	42
9.5	Binning	43
9.6	Pixel Format	44
9.7	Data ROI	45
9.8	Gain 및 Black Level	
9.9	Optical Black Clamp	46
9.10	LUT	47
9.11	Dark Signal Non-uniformity Correction	
	9.11.1 사용자 DSNU 보정 값 생성 및 저장	
9.12	Photo Response Non-uniformity Correction	50
	9.12.1 사용자 PRNU 보정 값 생성 및 저장	51
9.13	FPN Coefficients Control	52
9.14	CXP Link Configuration	53
9.15	Digital I/O Control	54
9.16	Debounce	56
9.17	Temperature Monitor	57
9.18	Status LED	
9.19	Test Pattern	58
9.20	Reverse X	61
9.21	Counter Control	62
9.22	Timer Control	64
9.23	Device User ID	65
9.24	Device Reset	65
9.25	Field Upgrade	66
9.26	User Set Control	66
Chapter 1	.0. 제품 동작 이상 확인 및 조치	

ndix A. Field Upgrade	
ndix B. LUT Download	
1 감마 곡선 다운로드	71
2 CSV 파일 다운로드	73
ndix C. Index	

표 목차

표 5-1	VT-16K5X2-E300A-64, VT-16K5X2-H300A-256의 사양	23
표 7-1	Micro-BNC 커넥터 핀 구성	29
표 7-2	전원 입력 단자의 핀 구성	30
표 7-3	컨트롤 입/출력 단자의 핀 구성	31
표 8-1	XML Parameters related to Trigger Rescaler Mode	37
표 8-2	허용 가능한 최대 Line Rate (8 bit)	38
표 9-1	XML Parameters related to Device Scan Type	39
표 9-2	XML Parameters related to Device Scan Type	39
표 9-3	XML Parameters related to TDI Stages	40
표 9-4	카메라 모델별 설정 가능한 TDI Stage 수	40
표 9-5	XML Parameters related to Scan Direction	41
표 9-6	XML Parameters related to ROI	42
표 9-7	XML Parameters related to Binning	43
표 9-8	XML Parameter related to Pixel Format	44
표 9-9	Pixel Format Values	44
표 9-10	XML Parameters related to Data ROI	45
표 9-11	XML Parameters related to Gain and Black Level	46
표 9-12	XML Parameters related to Optical Black Clamp	46
표 9-13	XML Parameters related to LUT	48
표 9-14	XML Parameters related to DSNU	48
표 9-15	XML Parameters related to PRNU	50
표 9-16	XML Parameters related to PRNU	52
표 9-17	XML Parameter related to CXP Link Configuration	53
표 9-18	XML Parameters related to Digital I/O Control	54

표 9-19	XML Parameters related to Device Temperature	57
표 9-20	Status LED	57
표 9-21	XML Parameter related to Test Pattern	58
표 9-22	XML Parameter related to Reverse X	61
표 9-23	XML Parameters related to Counter Control (1)	62
표 9-24	XML Parameters related to Counter Control (2)	63
표 9-25	XML Parameters related to Timer Control	64
표 9-26	XML Parameter related to Device User ID	65
표 9-27	XML Parameter related to Device Reset	65
표 9-28	XML Parameters related to User Set Control	66

그림 목차

그림 5-1	Camera Block Diagram	24
그림 5-2	Quantum Efficiency	25
그림 5-3	VT-16K5X2 Mechanical Dimension	26
그림 7-1	VT-16K5X2 카메라 후면부	28
그림 7-2	Micro-BNC 커넥터	29
그림 7-3	전원 입력 단자의 핀 배치도	
그림 7-4	컨트롤 입출력 단자 핀 배치도	31
그림 7-5	Trigger / Direction Input Schematic	32
그림 7-6	Strobe Output Schematic	32
그림 8-1	Trigger Mode = Off	34
그림 8-2	Trigger Mode = On	35
그림 8-3	Trigger Ratio = 0.5	37
그림 9-1	Scan Direction	41
그림 9-2	Region of Interest	42
그림 9-3	Sensor Binning	43
그림 9-4	유효 데이터 ROI	45
그림 9-5	LUT Block	47
그림 9-6	Gamma 0.5일 때의 LUT	47
그림 9-7	CXP Link Configuration	53
그림 9-8	User Output	55
그림 9-9	Exposure Active Signal	55
그림 9-10) Debounce	56
그림 9-11	Grey Horizontal Ramp	58
그림 9-12	2 Grey Diagonal Ramp	59

그림 9-13	Grey Diagonal Ramp Moving	59
그림 9-14	Sensor Specific	60
그림 9-15	원본 영상	61
그림 9-16	Reverse X된 영상	61
그림 9-17	Timer Signal	65
그림 9-18	User Set Control	67

Chapter 1. 주의사항

일반 주의사항

Caution!

- 본 제품을 떨어트리거나, 임의대로 분해하거나 개조하지 마십시오. 기기의 훼손이나 감전사고의 위험이 있습니다.
- 사용 안전을 위하여 어린이의 손이나 애완동물이 접근할 수 있는 곳에 보관하지 마십시오.
- 만약 부주의로 인해 액체나 이물질이 본 기기 내부로 들어갔을 경우 본 제품을 사용하지 마시고 즉시 전원을 끈 후, 판매처에 연락을 취해 협조를 구하십시오.
- 젖은 손으로 본 제품을 조작하지 마십시오. 감전 사고의 우려가 있습니다.
- 카메라의 온도가 5.2 Specification에서 표기한 온도 범위를 벗어나지 않는지
 주의하십시오. 극한 기온으로 인해 제품이 손상될 수 있습니다.

설치 시 주의사항

전원 공급 주의사항

Caution!

잘못된 전원을 공급하면 카메라가 손상될 수 있습니다. 카메라의 전원 전압 입력 범위를 초과하거나 미달될 경우 카메라가 손상되거나 오작동할 수 있습니다. 카메라의 전압 입력 범위는 5.2 Specification을 참조하십시오(※제조사 뷰웍스는 어댑터를 제공하지 않음).

카메라의 전원배선 연결 전에 카메라의 입력전원이 OFF 되어 있는 것을 확인한 후에 작업해 주십시오. 카메라 손상의 원인이 될 수 있습니다.

센서 청소 및 카메라 보관 주의 사항

가능한 한 카메라 센서의 표면은 닦지 않는 것이 좋습니다. 하지만, 표면에 먼지나 이물질이 있는 경우에는 부드럽고, 보푸라기가 없는 면봉에 적은 양의 고품질 렌즈 세정제를 적셔서 사용하십시오. 정전기 방전(ESD, Electrostatic Discharge)으로 인해 센서를 손상할 수 있으므로, 청소할 때 정전기가 발생하지 않는 천(예: 면 재질)을 사용해야 합니다.

센서 표면에 먼지나 이물질이 들어가지 않도록 주의하십시오.

카메라는 앞 면에 플라스틱 보호 덮개를 씌워서 출하됩니다. 카메라 센서에 먼지나 이물질이 들어가는 것을 방지하려면 카메라에 렌즈를 장착하지 않았을 때에는 항상 플라스틱 보호 덮개를 씌워서 관리하십시오. 또한 카메라에 렌즈나 플라스틱 덮개를 장착하지 않았을 때에는 카메라가 아래쪽을 향하도록 하십시오.

센서 청소 절차

센서에 먼지나 이물질이 있는 경우에는 다음 절차에 따라서 닦아내십시오.

- 1. 이온 에어건을 사용하여 오염 물질을 제거합니다.
- 2. 이 단계에서 오염 물질이 제거되지 않으면, 다음 단계를 진행합니다.
- **3.** 면봉(non-fluffy cotton buds)에 렌즈 세정제를 한 방울을 떨어트리고 센서의 오염 물질을 닦아냅니다.
- 4. 왼쪽에서 오른쪽으로(또는 오른쪽에서 왼쪽으로 한 방향으로만) 주의를 기울여서 닦습니다.
 한 번 닦아낸 면봉의 면을 다시 사용하지 않도록 합니다. 그렇지 않으면, 면봉에 붙어 있던
 오염 물질이 센서의 다른 곳에 다시 부착될 수 있습니다.
- 5. 렌즈를 장착하고, 작은 조리개(F8 이상)를 사용하고, 밝은 광원을 사용하여 영상을 획득합 니다. 사용자 모니터에서 영상을 표시하면, 오염 물질의 유무를 확인합니다. 오염 물질이 없어질 때까지 위 단계를 반복합니다.

Caution!

센서 청소 과정에서 센서에 스크래치가 나거나, 정전기 방전으로 인해 센서에 전기적 손상이 발생하면 무상 보증에서 제외됩니다.

Chapter 2. 보증범위

다음과 같은 경우 보증범위에서 제외됩니다.

- 인정되지 않는 제조자, Agent, 기술자에 의한 서비스와 개조로 인한 장비의 고장 등에 대해 제조사는 책임을 지지 않습니다.
 - 운영자의 과실로 인한 자료의 분실 및 훼손에 대해 제조사는 책임을 지지 않습니다.
 - 사용자가 사용 목적 이외의 용도로 사용하거나 무리한 사용 또는 과실로 인한 파손 및 고장이 발생한 경우
 - 잘못된 전원사용, 사용 설명서에 명시된 사용 조건에서 사용하지 않을 경우
- 벼락, 지진, 화재, 홍수 등으로 인한 자연재해
- 허가 없이 장비의 부품 및 소프트웨어를 교체하거나 개조하여 문제가 발생한 경우

제품 관련 문의 및 서비스가 필요한 경우 판매처나 제조사로 연락 바랍니다. 보증기간은 제품 판매 시 보증서에 명기되어 있는 기간으로 하고, 장비가 출고된 이후부터 적용됩니다.

Chapter 3. 사용자 안내문

용도 구분	사용자 안내문
A급 기기 (업무용 방송통신기기)	이 기기는 업무용(A급)으로 전자파 적합 등록을 한 기기이오니 판매자 또는 사용자는 이점을 주의하시기 바라며, 가정 외의 지역에서 사용하는 것을 목적 으로 합니다.

Chapter 4. 제품 구성

Package Components

VT-16K5X2-E300A-64/VT-16K5X2-H300A-256 with M95 mount

Chapter 5. 제품 규격

5.1 Overview

VT-16K5X2-E300A-64 및 VT-16K5X2-H300A-256 카메라는 여덟 개의 CoaXPress 채널을 갖춘 하이브리드 TDI(Time Delayed Integration) 라인 스캔 카메라로서 기존 라인 스캔 카메라보다 더욱 빠른 line rate 및 높은 감도를 제공합니다. CCD와 CMOS 회로가 결합된 하이브리드 영상 센서를 기반으로 한 TDI 라인 스캔 기술을 통해 VT-16K5X2-E300A-64 카메라는 최대 300kb 속도에서 64배 향상된 감도로 16k 해상도의 영상을 획득할 수 있습니다. 더 우수한 감도를 갖는 VT-16K5X2-H300A-256 카메라의 경우 최대 300kbz 속도에서 256배 향상된 감도로 16384 해상도의 영상을 획득할 수 있습니다.

고속 및 고감도를 구현한 이 카메라는 FPD 검사, 웨이퍼 검사, PCB 검사 및 고성능 문서 스캐닝 등에 이상적입니다.

주요 특징

- Hybrid TDI Line Scan
- Max. 16384 × 256 Pixel Resolution
- Bidirectional Operations with up to 256 TDI Stages
- Anti-blooming
- Trigger Rescaler and Strobe Output Control
- CoaXPress2.0 Interface up to 50 Gbps using 4 coax cables (4 CH)
- Advanced PRNU and DSNU Correction
- Area Scan Mode for Camera Alignment

적용 부문

- Flat Panel Display Inspection
- Printed Circuit Board Inspection
- Wafer Inspection
- High Performance Document Scanning

5.2 Specification

VT-16K5X2 카메라의 사양은 다음과 같습니다.

Specification	VT-16K5X2-E300A-64	VT-16K5X2-H300A-256		
Active Image(H ×)	√) 16384 × 64	16384 × 256		
Sensor Type	Hybrid TDI Line Scan	Hybrid TDI Line Scan		
Pixel Size	5.0 μ m $ imes$ 5.0 μ m	5.0 μ m \times 5.0 μ m		
Interface	CoaXPress 2.0 (CXP-12)	CoaXPress 2.0 (CXP-12)		
Pixel Data Format	8 /10 / 12 bit	8 /10 / 12 bit		
TDI Stage	64	64 / 128 / 192 / 256		
TDI Direction	External Control Port or Prog	grammable		
Trigger Synchronizat	tion Free-Run, External Trigger Sig Programmable Line Rate ar	Free-Run, External Trigger Signal, CoaXPress Programmable Line Rate and Trigger Polarity		
Max. Line Rate	300 kHz (ROI 16,000 pixels)			
Max. Line Rate (2 × 2 Binning)	257 kHz			
Min. Line Rate	1 kHz			
Throughput	4.8 Gpix/s			
Gamma Correction	User Defined LUT (Look Up T	User Defined LUT (Look Up Table)		
Black Level	-255 ~ 255 at 8 bit	-255 ~ 255 at 8 bit		
Gain Control	Analog Gain: \times 1, \times 2, \times 3, \times	Analog Gain: ×1, ×2, ×3, ×4 / Digital Gain: 1.0× ~ 8.0×		
External Trigger	External, 3.3 V – 5.0 V			
Power Adapter	10 ~ 30 V DC			
Dissipati	on Typ. 18.0 W / Max. 23.0 W			
PoCXP	24 V DC, Minimum of two Po	oCXP cables required		
Environmental	Ambient Operating: 0°C~40 Storage: 40°C~70°C	Ambient Operating: 0°C~40°C (Housing: 10°C~50°C) Storage: 40°C~70°C		
Mechanical / Weig	nt 100 mm × 100 mm × 72 mm, 8	100 mm \times 100 mm \times 72 mm, 860 g		
API SDK	Vieworks Imaging Solution 7	/.X		

Optical Interface		
Lens Mount	$M95 \times 1 \text{ mm}$	
Sensor to Camera Front	9.50 mm (Optical Distance)	
Sensor Alignment		
Flatness	±25 μm	
х	±0.15 mm	
У	±0.15 mm	
Z	±0.1 mm	

표 5-1 VT-16K5X2-E300A-64, VT-16K5X2-H300A-256의 사양

5.3 Camera Block Diagram

VT-16K5X2는 3개의 PCB로 구성되어 있고, Block Diagram은 다음과 같습니다.

그림 5-1 Camera Block Diagram

5.4 양자 효율

다음 그래프는 VT-16K5X2 카메라에 대한 양자 효율(Quantum Efficiency)을 보여줍니다.

그림 5-2 Quantum Efficiency

5.5 Mechanical Specification

다음 도면은 밀리미터 단위의 카메라 치수를 나타냅니다.

그림 5-3 VT-16K5X2 Mechanical Dimension

5.5.1 Camera Mounting 및 Heat Dissipation

카메라는 충분히 방열할 수 있는 구조에 설치하여 카메라 하우징의 온도를 50도 미만으로 유지해야 합니다. VL 카메라는 저전력으로 설계되어 작동하는 동안 카메라의 하우징 온도는 지정된 제한 온도 범위 내에서 유지됩니다. 하지만 카메라를 방열할 수 없거나 열악한 환경에 설치하면 과열될 수 있습니다. 다음과 같은 일반적인 가이드라인에 따라서 설치하는 것이 좋습니다.

- 모든 경우에 있어, 카메라의 하우징 온도를 관찰하고 50도 이하로 유지하는 것이 좋습니다. Device Temperature 파라미터를 사용하여 현재 카메라 내부 온도를 측정할 수 있습니다.
- 시스템의 금속 구조물 등에 장착하면 카메라가 충분히 방열할 수 있습니다.

Chapter 6. 카메라 연결 방법

다음 설명은 사용자의 PC에 CoaXPress 2.0 프레임그래버(이하 'CXP-12 프레임그래버')와 관련 소프트웨어가 설치되어 있다고 가정합니다. 또한 아래 절차는 4개의 coax 케이블을 사용하여 카메라와 CXP-12 프레임그래버 사이의 연결을 구성한다고 가정합니다. 자세한 내용은 CXP-12 프레임그래버 사용 설명서를 참조하십시오.

다음 절차에 따라서 사용자 PC에 카메라를 연결합니다.

- 1. 카메라와 전원 공급 장치가 분리되어 있는지, PC의 전원이 꺼져 있는지 확인하세요.
- 2. Coax 케이블의 한쪽 끝을 카메라의 CXP 커넥터 CH1에 꽂고 다른 끝은 PC의 CXP-12 프레 임그래버 CH1에 연결합니다. 그런 다음, 다른 세 개의 coax 케이블을 사용하여 카메라의 CXP 커넥터 CH2, CH3, CH4와 CXP-12 프레임그래버 CH2, CH3, CH4를 각각 연결합니다.
 - 전원 어댑터를 카메라의 전원 입력 단자에 연결합니다.
 - 전원 어댑터의 플러그를 전기 콘센트에 꽂습니다.

PoCXP를 사용할 경우, 전원 어댑터를 별도로 연결하지 않아도 됩니다.

PoCXP 지원 프레임그래버를 사용하여 카메라에 전원을 공급하려면 카메라 및 CXP-12 프레임그래버의 CH1 및 CH2는 반드시 연결해야 합니다.

3. 모든 케이블이 제대로 연결되었는지 확인합니다.

6.1 센서 중심 조정에 대한 주의사항

- 출하 시 중심이 맞춰진 상태이기 때문에 따로 조정이 필요 없습니다.
- 부득이하게 조정이 필요한 경우에는 제조사 또는 판매처에 문의해 주십시오.

6.2 Vieworks Imaging Solution 설치

최신 Vieworks Imaging Solution을 <u>http://vision.vieworks.com</u>에서 다운로드할 수 있습니다. 소프트웨어 설치 후 하드웨어 설치를 진행해야 합니다.

Chapter 7. Camera Interface

7.1 General Description

카메라의 후면부에는 3종류의 연결 잭과 상태표시 LED가 있으며 각각의 기능은 다음과 같습니다.

- ① CoaXPress 커넥터:
- ② Status LED:
- ③ 6핀 전원 입력 단자:
- ④ 6핀 컨트롤 입출력 단자:

비디오 데이터 전송 및 카메라 제어

전원 상태 및 작동 모드 표시

- 카메라 전원 입력(PoCXP를 사용하지 않을 경우)
- 외부 트리거 신호 입력 및 스트로브 출력

그림 7-1 VT-16K5X2 카메라 후면부

7.2 CoaXPress 커넥터

CoaXPress 프로토콜에는 자동 링크 검색 메커니즘(Plug and Play)이 포함되어 카메라에서 CXP-12 프레임그래버로의 연결을 정확하게 감지할 수 있습니다. 카메라와 CXP-12 프레임그래버 사이의 연결은 동축 케이블(coaxial cable)을 사용하고, 케이블당 최대 12.5 Gbps로 데이터를 전송할 수 있습니다.

7.2.1 Micro-BNC 커넥터

그림 7-2 Micro-BNC 커넥터

VT-16K5X2 카메라의 CoaXPress 커넥터는 CoaXPress 2.0 표준을 따르며 커넥터의 채널 구성은 다음 표와 같습니다.

Channel	Max. Bit Rate per Coax	Туре	PoCXP Compliant
CH1	12.5 Gbps	Master Connection	Yes
CH2	12.5 Gbps	Extension Connection	Yes
CH3	12.5 Gbps	Extension Connection	No
CH4	12.5 Gbps	Extension Connection	No

표 7-1 Micro-BNC 커넥터 핀 구성

Note:

동축 케이블(또는 'coax 케이블'이라고 함)을 사용하여 CXP-12 프레임그래버와 카메라를 연결할 때 연결 위치에 주의해야 합니다. 카메라의 CXP 커넥터 CH1과 CXP-12 프레임그래버 CH1을 올바르게 연결하지 않으면 카메라의 영상이 제대로 출력되지 않거나 PC와 카메라의 통신이 정상적으로 수행되지 않습니다.

7.3 전원 입력 단자

전원 입력 단자는 Hirose 6핀 커넥터(part # HR10A-7R-6PB)이며 핀 배치 및 구성은 다음과 같습니다.

그림 7-3 전원 입력 단자의 핀 배치도

Pin Number	Signal	Туре	Description
1, 2, 3	+ 12V DC	Input	DC Power Input
4, 5, 6	DC Ground	Input	DC Ground

표 7-2 전원 입력 단자의 핀 구성

- Hirose 6핀 커넥터에 권장되는 메이팅(mating) 커넥터는 Hirose 6핀 플러그(part # HR10A-7P-6S) 또는 동종의 커넥터입니다.
- 외부 전원 공급 장치는 12 V DC ±10% 전압 출력에 3A 이상 전류 출력을 가지는 전원 어댑터의 사용을 추천합니다(※ 카메라 제조사 뷰웍스는 어댑터를 제공하지 않음).

전원 입력 시 주의사항

Caution! 카메라의 전원 배선 연결 전에 카메라의 입력 전원이 꺼져 있는 것을 확인한 후에 작업을 해주십시오. 카메라 손상의 원인이 될 수 있습니다. 카메라의 전원 전압 입력 범위를 초과하여 전압을 공급하면 카메라의 내부 회로가 손상될 수 있습니다. PoCXP와 외부 전원을 함께 사용하지 마십시오.

7.4 컨트롤 입출력 단자

컨트롤 입출력 단자(Control Receptacle)는 Hirose 6핀 커넥터(part # HR10A-7R-6SB)이며, 외부 트리거 신호 입력과 스트로브 출력 포트로 구성되어 있습니다. 핀 배치 및 구성은 다음과 같습니다.

그림 7-4 컨트롤 입출력 단자 핀 배치도

Pin Number	Signal	Туре	Description
1	Trigger Input	Input	3.3 V ~ 5.0 V TTL input
2	Scan Direction Input	Input	3.3 V ~ 5.0 V TTL input
3	DC Ground	-	DC Ground
4	DC Ground	-	DC Ground
5	NC	-	Not Connected
6	Strobe Out	Output	3.3 V TTL Output Output resistance: 47 Ω
6	Strobe Out	- Output	3.3 V TTL Output Output resistance: 47 Ω

표 7-3 컨트롤 입/출력 단자의 핀 구성

Note:

Hirose 6핀 커넥터에 권장되는 메이팅(mating) 커넥터는 Hirose 6핀 플러그(part # HR10A-7P-6P) 또는 동종의 커넥터를 사용할 수 있습니다.

7.5 Trigger/Direction Input Circuit

아래 그림은 6핀 커넥터의 트리거 신호 입력과 TDI 방향 입력 회로를 나타내고 있습니다. 트리거 입력과 TDI 방향 신호는 노이즈 마진이 우수한 CMOS 버퍼를 통해 내부 회로로 전달됩니다. 카메라에서 인식 가능한 최소 트리거 폭은 1µs이며 입력된 트리거 신호가 1µs 폭보다 작을 경우 카메라에서 트리거 신호는 무시하게 됩니다. 외부 트리거 신호와 TDI 방향 입력은 아래의 회로도와 같이 신호를 공급할 수 있습니다.

그림 7-5 Trigger / Direction Input Schematic

7.6 Strobe Output Circuit

Strobe 출력 신호는 3.3 V 출력 레벨의 Line Driver IC를 통해서 출력되며, 신호의 펄스 폭은 카메라의 Line Start 트리거 신호(shutter)와 동기화하여 출력됩니다(9.15 Digital I/O Control 참조).

Chapter 8. Acquisition Control

이 장에서는 영상을 획득하는 데 필요한 다음과 같은 항목에 대해 자세한 정보를 제공합니다.

- Acquisition Start/Stop 명령 및 Acquisition Mode 파라미터
- Line Start 트리거
- Line Rate 제어
- 노출 시간 설정

8.1 Acquisition Start/Stop 명령 및 Acquisition Mode

Acquisition Start 명령을 실행하면 카메라는 영상 획득을 준비합니다. Acquisition Start 명령을 실행하지 않으면 카메라는 영상을 획득할 수 없습니다.

Acquisition Stop 명령을 실행하면 카메라는 영상 획득을 종료합니다.

Acquisition Mode 파라미터는 Acquisition Start 명령의 작동 방법에 직접적인 영향을 미치고, VT-16K5X2 카메라는 Continuous만 지원합니다.

Acquisition Start 명령은 Acquisition Stop 명령을 실행하기 전까지 계속 유지됩니다. Acquisition Stop 명령을 실행하면 카메라는 Acquisition Start 명령을 새로 실행하기 전까지 영상을 획득할 수 없습니다.

8.2 Line Start 트리거

Trigger Selector 파라미터를 사용하여 트리거 유형을 선택할 수 있고, VT-16K5X2 카메라는 Line Start 트리거만 사용할 수 있습니다. Line Start 트리거는 라인 영상 획득을 시작하는 데 사용됩니다. Line Start 트리거는 카메라 내부에서 생성하거나 Trigger Source 파라미터를 LineO 또는 CC1으로 설정하여 외부에서 공급할 수도 있습니다. Line Start 트리거를 카메라에 공급하면 카메라는 라인 영상 획득을 시작합니다.

8.2.1 Trigger Mode

Line Start 트리거와 관련된 가장 중요한 파라미터는 Trigger Mode 파라미터입니다. Trigger Mode 파라미터는 Off 또는 On으로 설정할 수 있습니다.

Trigger Mode = Off

Trigger Mode 파라미터를 Off로 설정하면 필요한 모든 Line Start 트리거를 카메라 내부에서 생성하기 때문에 사용자는 카메라에 Line Start 트리거를 공급할 필요가 없습니다.

Trigger Mode를 Off로 설정한 후 Acquisition Start 명령을 실행하면 카메라는 자동으로 Line Start 트리거 신호를 생성합니다. 카메라는 Acquisition Stop 명령을 실행할 때까지 계속해서 Line Start 트리거 신호를 생성합니다.

Free-Run

Trigger Mode 파라미터를 Off로 설정하면 카메라 내부에서 필요한 모든 트리거 신호를 생성합니다. 이와 같이 카메라를 설정하면 사용자가 필요한 트리거를 공급하지 않아도 계속해서 영상을 획득합니다. 이러한 사용 방법을 흔히 Free-Run이라고 합니다.

카메라에서 Line Start 트리거 신호를 생성하는 속도는 Acquisition Line Rate 파라미터에 의해 결정될 수 있습니다.

- 현재 카메라 설정에서 허용 가능한 최대 line rate보다 작은 값으로 설정하면 지정한 line rate로 영상 을 획득합니다.
- 현재 카메라 설정에서 허용 가능한 최대 line rate보다 큰 값으로 설정하면 카메라는 허용 가능한 최대 line rate로 영상을 획득합니다.

그림 8-1 Trigger Mode = Off

Trigger Mode = On

Trigger Mode 파라미터를 On으로 설정하면 사용자는 영상 획득을 위해 카메라에 Line Start 트리거 신호를 공급해야 합니다. Trigger Source 파라미터는 Line Start 트리거 신호 역할을 할 소스 신호(source signal)를 지정합니다.

설정 가능한 Trigger Source 파라미터는 다음과 같습니다.

- LineO: 외부에서 생성된 전기 신호(흔히 하드웨어 또는 External 트리거 신호라고 함)를 카메라의 컨 트롤 입/출력 단자에 주입하여 카메라에 Line Start 트리거 신호를 공급할 수 있습니다. 자세한 내용은 7.5 Trigger/Direction Input Circuit을 참조하십시오.
- LinkTriggerO: CXP 프레임그래버의 CH1 채널을 통해서 카메라에 Line Start 트리거 신호를 공급할 수 있습니다. 자세한 내용은 CXP 프레임그래버 사용 설명서를 참조하세요.

Trigger Source 파라미터를 설정한 후 Trigger Activation 파라미터도 설정해야 합니다.

설정 가능한 Trigger Activation 파라미터는 다음과 같습니다.

- Rising Edge: 전기 신호의 상승 에지(rising edge)를 Line Start 트리거로 작동하도록 지정합니다.
- Falling Edge: 전기 신호의 하강 에지(falling edge)를 Line Start 트리거로 작동하도록 지정합니다.
- Any Edge: 전기 신호의 상승 및 하강 에지를 Line Start 트리거로 작동하도록 지정합니다.

Trigger Mode 파라미터를 On으로 설정한 경우 카메라의 line rate는 외부 트리거 신호를 조작하여 제어할 수 있습니다. 이때, 허용 가능한 최대 line rate보다 빠른 속도로 트리거 신호를 공급하면 안 됩니다.

그림 8-2 Trigger Mode = On

8.2.2 External/CoaXPress 트리거 신호 사용하기

Trigger Mode 파라미터를 On으로 설정하고 Trigger Source 파라미터를 LinkTrigger0로 설정한 경우 카메라에 External 또는 CoaXPress 트리거 신호(Line Start)를 공급해야 영상 획득을 시작할 수 있습니다.

CXP 프레임그래버의 CH1 채널을 통해서 트리거 신호를 공급하려면 Trigger Source 파라미터를 LinkTrigger0으로 설정해야 합니다. 그런 다음 CXP 프레임그래버 제조사에서 제공하는 API를 활용하여 CoaXPress 트리거 신호를 Line Start 트리거 신호로서 카메라에 공급할 수 있습니다. 자세한 내용은 CXP 프레임그래버 사용 설명서를 참조하십시오.

Hardware를 통해서 트리거 신호를 공급하려면 Trigger Source 파라미터를 LineO로 설정해야 합니다. 그런 다음 적절한 전기 신호를 카메라에 공급하면 발생된 Line Start 트리거 신호를 카메라에서 인식하게 됩니다.

외부 또는 CoaXPress 신호의 상승 에지 및/또는 하강 에지를 Line Start 트리거로 사용할 수 있습니다.

Trigger Activation 파라미터에서 상승 에지 및/또는 하강 에지를 트리거로 설정할지 선택합니다. 카메라가 외부 또는 CoaXPress 신호의 제어에 의해 작동하는 경우에는 외부 트리거 신호의 주기에 의해 다음과 같이 line rate가 결정됩니다.

Line Rate (Hz) = External/CoaXPress signal period in seconds

예를 들어, 20 µs(0.00002 초) 주기의 외부 트리거 신호로 카메라를 작동하면 line rate는 50 ₩z입니다.
8.2.3 Trigger Multiplier/Divider

Trigger Multiplier나 Trigger Divider를 사용하면 외부 트리거 신호의 주기를 원하는 비율로 조절할 수 있습니다. 예를 들어, 컨베이어 벨트(Conveyor Belt)의 인코더(Encoder)를 사용하여 카메라의 입력 단자에 트리거 신호를 공급하는 경우, 인코더에서 한 회전당 출력하는 펄스의 수는 고정되어 있습니다. 이때, 수직 방향의 영상 피치를 맞추기 위해 트리거 신호의 주기를 조절해야 하는 경우 Trigger Multiplier 또는 Trigger Divider에서 사용자가 카메라에 입력된 트리거 신호의 주기를 다음과 같이 조절할 수 있습니다.

Trigger Multiplier와 Trigger Divider 관련	XML	파라미터는	다음과	같습니다.
--	-----	-------	-----	-------

XML Param	eters	Value	Description
Acquisition	Trigger Multiplier	1 ~ 1024	변환할 트리거 비율 설정
Control	Trigger Divider	1 ~ 1024	변환할 트리거 비율 설정
	Trigger Ratio	0.000977 ~ 1024	변환된 트리거 비율
TriggerRescaler FilterSize	외부 트리거 신호의 지터	(jitter)를 감쇄하기 위한 필터 지수 설정	
	SIZE16	필터 지수를 16으로 설정	
		SIZE32	필터 지수를 32로 설정
		SIZE64	필터 지수를 64로 설정
		SIZE128	필터 지수를 128로 설정
	SIZE256	필터 지수를 256으로 설정	
	SIZE512	필터 지수를 512로 설정	

표 8-1 XML Parameters related to Trigger Rescaler Mode

Note:

Multiplier와 Divider의 경우, 설정 값을 정상적으로 적용하려면 초기에 Trigger 신호를 몇 차례 입력하는 과정이 필요합니다. 그리고 이러한 설정 값이 잘 적용되기 전까지 Strobe 출력이 지연됩니다.

VIEWOLKS

8.3 허용 가능한 최대 Line Rate

일반적으로 카메라에서 허용 가능한 최대 line rate는 다음과 같은 여러 요소에 의해 제한됩니다.

- Coax 케이블당 허용 가능한 최대 bit rate 및 CXP Link Configuration 개수.
- Coax 케이블당 허용 가능한 최대 bit rate를 높은 값(예를 들어, CXP6의 최대 bit rate는 6.25 Gbps이고, CXP12의 최대 bit rate는 12.50 Gbps)으로 설정하면 카메라에서 획득한 라인 영상을 사용자 컴퓨터의 CXP 프레임그래버로 전송하는 시간이 더 적게 걸립니다.
- 카메라의 CXP Link Configuration 파라미터를 더 높은 최대 bit rate와 더 많은 채널 수를 사용하도록 카메라를 설정하면, 낮은 최대 bit rate와 적은 채널 수로 설정했을 때보다 허용 가능한 최대 line rate 가 더 빠릅니다.

VT-16K5X2 카메라의 허용 가능한 최대 line rate는 다음과 같습니다.

CXP Link Configuration	최대 Line Rate (Full Resolution)
CXP1 × 4	29 kHz
$CXP2 \times 4$	59 kHz
$CXP3 \times 4$	74 kHz
$CXP5 \times 4$	119 kHz
$CXP6 \times 4$	149 kHz
CXP10 × 4	238 kHz
CXP12 × 4	298 kHz

표 8-2 허용 가능한 최대 Line Rate (8 bit)

허용 가능한 최대 Line Rate 증가하기

카메라의 현재 설정에서 허용 가능한 최대 line rate보다 더 빠른 속도로 라인 영상을 획득하려면 최대 line rate에 영향을 미치는 다음의 요소를 하나 이상 조절하고 속도가 증가했는지 확인합니다.

- 카메라에서 라인 영상을 전송하는 시간은 line rate를 제한하는 중요한 요소입니다. 다음 중 하나 이상 을 수행하여 라인 영상 전송 시간을 줄일 수 있습니다(이로 인해 최대 line rate는 증가합니다.).
 - 12 bit pixel format 대신 8 bit pixel format을 사용합니다. 낮은 bit의 이미지 전송 시간이 높은 bit의 이미
 지보다 더 적게 걸립니다.
 - 작은 길이의 ROI를 사용합니다. ROI 길이를 줄이게 되면 카메라는 더 적은 데이터를 전송하기 때문에 전송 시간이 감소합니다.
 - 가능한 한 더 높은 bit rate와 더 많은 채널 수를 사용하도록 카메라를 설정합니다.

Chapter 9. Camera Features

9.1 Device Scan Type

VT-16K5X2 카메라는 Areascan 또는 Linescan 두 가지 모드로 작동할 수 있습니다. Areascan 모드에서 카메라는 두 개의 픽셀 라인을 사용하여 사용자가 설정한 이미지 사이즈 만큼의 Area 영상을 전송합니다. 이 모드는 검사 대상 위치와 카메라를 정렬하는 데 유용합니다. Linescan 모드에서 카메라는 라인 스캔 카메라로 작동합니다.

Device Scan Type 설정과 관련된 XML 파라미터는 다음과 같습니다.

XML Parameters		Value	Description
DeviceControl	DeviceScanType	Areascan	카메라를 Areascan모드로 작동
		Linescan	카메라를 Linescan 모드로 작동

표 9-1 XML Parameters related to Device Scan Type

Areascan 모드로 사용할 경우 이미지 세로 사이즈 관련 XML 파라미터는 다음과 같습니다.

XML Parameters	Value	Description
ImageFormatControl Height	256 ~ 16384	Areascan 모드의 Height 설정

표 9-2 XML Parameters related to Device Scan Type

9.2 TDI Stages(Monochrome Only)

Linescan 모드에서는 TDI Stages 파라미터를 사용하여 카메라에서 사용할 Integration Stage 수를 결정할 수 있습니다. 예를 들어, 카메라에서 2개의 TDI Stage를 사용하도록 설정하면 2배 향상된 감도로 영상을 획득할 수 있습니다.

TDI Stage 설정과 관련된 XML 파라미터는 다음과 같습니다.

XML Parameters		Value	Description
ImageFormatControl	TDI Stages	64	TDI Stage 수를 64로 설정
	128	TDI Stage 수를 128로 설정	
	192	TDI Stage 수를 192로 설정	
		256	TDI Stage 수를 256으로 설정

 \pm 9-3 $\,$ XML Parameters related to TDI Stages $\,$

카메라 모델별 설정 가능한 TDI Stage 수는 다음과 같습니다.

Camera Model	The number of available TDI Stages
VT-16K5X2-E300A-64	64
VT-16K5X2-H300A-256	64/128/192/256

표 9-4 카메라 모델별 설정 가능한 TDI Stage 수

9.3 Scan Direction

Linescan 모드에서는 Scan Direction 파라미터를 사용하여 영상 센서의 스캔 방향을 선택할 수 있습니다. 라인 영상을 획득할 물체가 카메라의 윗부분을 먼저 지나가고, 그 다음 카메라의 아랫부분을 지나가는 경우에는 Forward 모드를 사용해야 합니다. 반대로 라인 영상을 획득할 물체가 카메라의 아랫부분을 먼저 지나가고, 그 다음 카메라의 윗부분을 지나가는 경우에는 Backward 모드를 사용해야 합니다. 또한, Scan Direction을 Line 1으로 설정하면 카메라의 컨트롤 입/출력 단자 2번 핀에 주입되는 외부에서 생성한 전기 신호(Low = Forward, High = Reverse)를 통해서 스캔 방향을 제어할 수 있습니다.

그림 9-1 Scan Direction

XML Parameters		Value	Description
ImageFormatControl Scan Direction	Forward	Forward 방향으로 영상 스캔	
	Backward	Backward 방향으로 영상 스캔	
		Line 1	외부 신호를 통해서 스캔 방향 제어

⊞ 9-5 XML Parameters related to Scan Direction

Area 모드에서 Scan Direction 파라미터를 Backward로 설정하면 수직으로 방향이 바뀐 영상을 얻을 수 있습니다.

9.4 Region of Interest

ROI(Region of Interest) 기능을 통해 사용자는 센서 라인 중 필요로 하는 데이터를 포함한 국소 영역을 지정할 수 있습니다. 카메라를 운용하는 동안 지정한 영역의 픽셀 정보만 센서에서 readout한 다음 카메라에서 프레임그래버로 전송합니다.

ROI는 센서 열의 왼쪽 끝을 기준으로 하고, ROI의 위치와 크기는 Offset X 및 Width 설정에 따라 정의됩니다. 예를 들어, Offset X를 24로 설정하고 Width를 160으로 설정하면 다음 그림과 같이 ROI를 설정합니다. 이 경우, 카메라는 24부터 184까지의 픽셀을 readout하고 전송합니다.

그림 9-2 Region of Interest

Linescan 모드에서 ROI 설정과 관련된 XML 파라미터는 다음과 같습니다.

XML Parameters		Value †	Description
ImageFormatControl	Width	64-16384	Image ROI의 폭 설정
	OffsetX	-	Image ROI와 원점과의 수평 Offset 설정
	OffsetY	0	Image ROI와 원점과의 수직 Offset 설정

+: 이 표의 모든 파라미터는 pixel 단위

 \pm 9-6 XML Parameters related to ROI

사용자는 Image Format Control 범주의 Width 파라미터를 설정하여 ROI 크기를 변경할 수 있습니다. 그리고 Offset X 파라미터를 설정하여 ROI의 원점 위치를 변경할 수 있습니다. 이때, Width + Offset X 값은 Width Max 값보다 작아야 합니다. 카메라의 Width는 기본적으로 최대값으로 설정되어 있으므로 사용자는 ROI 크기를 먼저 설정한 후 Offset 값을 설정해야 합니다.

- Width 파라미터는 32의 배수로 설정해야 합니다.
- 설정 가능한 최소 ROI Width는 64입니다.

Caution!

Acquisition Start 명령을 실행한 후 카메라의 Image ROI 설정을 변경하면 비정상적인 영상을 획득할 수 있습니다. Acquisition Stop 명령을 실행한 후 Image ROI 설정을 변경하십시오.

9.5 Binning

Binning은 인접한 픽셀의 값을 더해서 하나의 픽셀로 내보냄으로써 레벨 값은 증가시키고, 해상도는 감소시키는 효과를 갖습니다. Binning 기능 XML 파라미터는 다음과 같습니다.

XML Paramete	rs	Value	Description
ImageFormat Control BinningH Mode BinningH BinningV Mode	BinningSelector	Sensor	Binning 엔진을 Sensor로 선택. Binning을 센서에 의해 아날로그로 적용합니다.
	BinningHorizontal Mode	Sum	Binning Horizontal 설정 값만큼 인접한 픽셀의 값을 더해서 하나의 픽셀 값으로 내보냅니다.
	BinningHorizontal	×1, ×2	수평 방향으로 더할 픽셀 수
	BinningVertical Mode	Sum	Binning Vertical 설정 값만큼 인접한 픽셀의 값을 더해서 하나의 픽셀 값으로 내보냅니다.
	BinningVertical	×1, ×2	수직 방향으로 더할 픽셀 수

 \pm 9-7 $\,$ XML Parameters related to Binning

Sensor Binning 모드를 설정하고 Sum을 선택하면, Horizontal Binning과 Vertical Binning을 함께 사용하여 감도를 4배까지 높일 수 있습니다.

9.6 Pixel Format

Pixel Format 파라미터를 사용하여 카메라에서 전송하는 영상 데이터의 pixel format(8 bit, 10 bit 또는 12 bit)을 결정할 수 있습니다.

Pixel Format 관련 XML 파라미터는 다음과 같습니다.

XML Parameter		Description
ImageFormatControl	PixelFormat	지원 가능한 pixel format 설정

 \pm 9-8 XML Parameter related to Pixel Format

VT-16K5X2 카메라가 지원하는 Pixel Format은 다음과 같습니다.

VT-16K5X2

Mono 8/10/12

표 9-9 Pixel Format Values

9.7 Data ROI

Fixed Pattern Noise가 발생한 이미지를 보정하려면, 데이터 ROI(Region of Interest)의 파라미터 값을 조절하여 작업 영역을 지정할 수 있습니다. (9.13 FPN Coefficients Control 참고).

데이터 ROI 설정을 위한 XML 파라미터는 다음과 같습니다.

XML Parameters	5	Value	Description
DataRoiControl DataRoiSelector DataRoiOffsetX DataRoiOffsetY DataRoiWidth	FixedPatternNoise	FPNCoerricientsControl 항목의 값을 적용 할 데이터 ROI 선택	
	DataRoiOffsetX	-	ROI 시작 지점의 X 좌표
	DataRoiOffsetY	-	ROI 시작 지점의 Y 좌표
	DataRoiWidth	-	ROI 폭
	DataRoiHeight	-	ROI 높이

표 9-10 XML Parameters related to Data ROI

이미지 ROI 및 데이터 ROI를 동시에 사용하는 경우에는 설정한 데이터 ROI와 이미지 ROI의 중첩되는 영역의 픽셀 데이터만 유효합니다. Height에 보정 데이터를 생성하기 위해 필요한 라인 수를 지정합니다. 그러면 지정한 라인 수만큼 카메라가 내부 버퍼에 이미지를 획득한 후 이를 이미지 보정에 사용합니다.

유효 영역은 아래 그림과 같이 결정됩니다.

그림 9-4 유효 데이터 ROI

9.8 Gain 및 Black Level

Gain 파라미터 값이 증가하면 영상의 모든 픽셀 값을 증가시킬 수 있습니다. 이로 인해 센서에서 출력하는 값보다 높은 Grey 값을 카메라에서 출력할 수 있습니다.

- 1. Gain Selector 파라미터를 사용하여 원하는 Gain Control(Analog All 또는 Digital All)을 선택 합니다.
- 2. Gain 파라미터를 원하는 값으로 설정합니다.

Black Level 파라미터를 조절하여 카메라에서 출력하는 픽셀 값에 설정 값만큼 offset을 추가할 수 있습니다.

- 1.
 Black Level Selector 파라미터를 사용하여 원하는 Black Level Control(Digital All)을

 선택합니다.
- 2. Black Level 파라미터를 원하는 값으로 설정합니다. Pixel Format 파라미터 설정 값에 따라서 설정 값 범위가 달라집니다.

Gain	및	Black Level	설정	관련 XML	파라미터는	다음과	같습니다.
------	---	-------------	----	--------	-------	-----	-------

XML Parameters		Value	Description
Analog Control	GainSelector	Analog All	모든 아날로그 채널에 Gain 값 적용
		Digital All	모든 디지털 채널에 Gain 값 적용
	Gain	1×, 2×, 3×, 4×	아날로그 Gain 값 설정(1.25x, 1.75x, 2x, 3x, 4x)
		1.0× ~8.0×	디지털 Gain 값 설정
	BlackLevelSelector	Digital All	모든 디지털 채널에 Black Level 값 적용
	BlackLevel	-255 ~255	Black Level 값 설정(8 bit 기준 설정 값)

표 9-11 XML Parameters related to Gain and Black Level

9.9 Optical Black Clamp

Optical Black Clamp 기능을 사용하면 센서 온도 변화로 인한 픽셀값 변화를 보정할 수 있습니다. 해당 기능을 사용하면 VT-16K5X2 카메라는 실시간으로 온도 변화에 따른 Offset을 제거하여 온도에 의한 픽셀 레벨 변화를 최소화합니다.

Optical Black Clamp 설정 관련 XML 파라미터는 다음과 같습니다.

XML Parameters	5	Value	Description
AnalogControl	OpticalBlackClamp	Off	Optical Black Clamp 기능 해제
		On	Optical Black Clamp 기능 사용

Η 9-12 XML Parameters related to Optical Black Clamp

9.10 LUT

LUT(Lookup Table) 기능을 통해 원래의 영상 값을 임의의 레벨 값으로 변환할 수 있습니다.

Luminance

각 레벨 값에 대해 일대일 매핑되기 때문에 임의의 12bit 입력에 대해 임의의 12bit 출력을 연결할 수 있습니다. LUT는 4096개(0~4095)의 입력 값을 갖는 테이블 형태로 구성되어 있고, 카메라는 LUT 데이터 저장용으로 하나의 non-volatile 공간을 제공합니다. 사용자는 LUT 적용 여부를 선택할 수 있습니다. 카메라에 LUT 데이터를 다운로드하는 방법은 Appendix B를 참고하십시오.

그림 9-5 LUT Block

그림 9-6 Gamma 0.5일 때의 LUT

XML Parameters		Value	Description		
LUTControl	LUTSelector	Luminance	Luminance LUT		
	LUTEnable	True	선택한 LUT를 활성화합니다.		
		False	선택한 LUT를 비활성화합니다.		
	LUTValue	0 ~ 4095	LUTIndex 입력 값에 해당하는 현재 LUT의 출력 값		
	LUTSave -		현재 LUT 데이터를 비활성 메모리에 저장합니다.		
	LUTLoad	-	비휘발성 메모리에서 LUT 데이터를 불러옵니다.		

LUT 설정 관련 XML 파라미터는 다음과 같습니다.

 \pm 9-13 XML Parameters related to LUT

9.11 Dark Signal Non-uniformity Correction

이론적으로 완전히 어두운 환경에서 디지털 카메라로 영상을 획득하면 영상의 모든 픽셀 값은 거의 '0(zero)'이거나 모두 같아야 합니다. 하지만 센서 내의 각 픽셀은 빛에 반응하는 정도가 다를 수 있기 때문에 실제로 어두운 환경에서 영상을 획득하면 카메라에서 출력되는 각 픽셀 값은 다를 수 있습니다. 이러한 차이를 DSNU(Dark Signal Non-Uniformity)라고 하고, VT-16K5X2 카메라는 이러한 DSNU를 보정할 수 있는 기능을 제공합니다.

DSNU 관련 XML 파라미터는 다음과 같습니다.

XML Parameters		Value	Description
DSNU	DSNUDataSelector	-	DSNU 데이터 선택
	DSNUDataGenerate	-	DSNU 데이터 생성
	DSNUDataGenerateAll	-	각 Analog Gain 설정 값(1×, 2×, 3×, 4×)에 대해 각각의 DSNU 데이터를 생성하고 저장
	DSNUDataSave	-	생성한 DSNU 데이터를 비휘발성 메모리에 저장합니다. DSNUDataGenerate로 생성한 데이터는 휘발성 메모리에 저장되기 때문에 카메라의 전원을 껐다 켠 후 해당 데이터 를 사용하려면 비휘발성 메모리에 저장해야 합니다.
	DSNUDataLoad	-	비휘발성 메모리에 저장되어 있는 DSNU 데이터를 휘발성 메모리로 불러옵니다.

 \pm 9-14 $\,$ XML Parameters related to DSNU

9.11.1 사용자 DSNU 보정 값 생성 및 저장

사용자가 실제 사용 환경에 맞게 DSNU 보정 값을 생성하고 저장하려면, 아래 절차를 따릅니다.

Note: 최적화된 DSNU 데이터를 생성하려면, 카메라의 전원을 켠 후 카메라의 하우징 온도가 안정화된 이후에 DSNU 데이터를 생성하십시오. 1. 카메라에서 DSNU 보정 값을 생성할 때에는 전체 센서를 사용합니다. DSNU 보정 값은 현 재 설정한 OffsetX 값과 Width 영역을 참조하므로, 이 두 가지 값을 올바르게 설정했는지 확인하십시오. 2. 카메라 렌즈를 덮거나 렌즈의 조리개를 닫고, 암실 등과 같은 완전히 어두운 환경에서 라인 영상을 획득하도록 합니다. 3. 카메라를 Free-Run 모드로 설정하거나 외부 트리거 신호를 적절히 공급하여 라인 영상 획득을 시작합니다. 4. DSNU 보정 값을 생성합니다. 5. DSNU Data Generate 명령을 실행하는 경우 a. 현재 Analog Gain 설정 값에 따른 DSNU 데이터를 생성합니다. 이 경우 카메라는 최소 1024번의 라인 영상을 획득해야 합니다. b. 라인 영상 획득을 완료하면, 생성한 DSNU 보정 값은 활성화되고, 카메라의 휘발성 메모리에 저장됩니다. c. 생성한 DSNU 보정 값을 카메라의 Flash(비휘발성) 메모리에 저장하려면 DSNU Data Save 명령을 실행합니다. 이 경우 메모리에 저장된 현재 Analog Gain 설정 값에 따른 기존 DSNU 값을 덮어쓰게 됩니다. 6. Analog Gain 설정 값을 변경하거나 비휘발성 메모리에 있는 기존 값을 불러오려면 DSNU Data Load 명령을 실행합니다.

9.12 Photo Response Non–uniformity Correction

이론적으로 밝은 환경에서 라인 스캔 카메라로 균일하게 밝은 대상을 영상으로 획득하면 영상의 모든 픽셀 값은 거의 최대 grey 값이거나 모두 같아야 합니다. 하지만 센서 내 각 픽셀의 작은 성능 차이, 렌즈 및 조명의 변화 등으로 인해 카메라에서 출력되는 각 픽셀 값은 다를 수 있습니다. 이러한 차이를 PRNU(Photo Response Non-uniformity)라고 하고, VT-16K5X2 카메라는 이러한 PRNU를 보정할 수 있는 기능 및 16개의 PRNU 저장 공간을 제공합니다.

PRNU 관련 XML 파라미터는 다음과 같습니다.

XML Parameters		Value	Description
PRNU	PRNUCorrection	False	PRNU Correction 기능 해제
		True	PRNU Correction 기능 설정
	PRNUDataSelector	Default, Space 1 ~ Space 15	PRNU 데이터를 저장 또는 불러올 영역 설정
	PRNUTargetLevelAUTO	False	선택하면 PRNU Target Level을 수동으로 지정
		True	선택하면 PRNU Target Level을 자동으로 지정
	PRNUTargetLevel	0 ~ 255	PRNU Target Level 설정(@ 8 bit Pixel Format)
	PRNUDataGenerate	-	PRNU 데이터 생성
	PRNUDataSave	-	생성한 PRNU 데이터를 비휘발성 메모리에 저장합니다. PRNUGenerate로 생성한 데이터는 휘발성 메모리에 저장되기 때문에 카메라의 전원을 껐다 켠 후 해당 데 이터를 사용하려면 비휘발성 메모리에 저장해야 합니 다.
	PRNUDataLoad	-	비휘발성 메모리에 저장되어 있는 PRNU 데이터를 휘 발성 메모리로 불러옵니다.

표 9-15 XML Parameters related to PRNU

9.12.1 사용자 PRNU 보정 값 생성 및 저장

사용자가 실제 사용 환경에 맞게 PRNU 보정 값을 생성하고 저장하려면, 아래 절차를 따릅니다.

9.13 FPN Coefficients Control

고정 패턴 노이즈(FPN, Fixed Pattern Noise)가 발생할 때 이 제품에서 제공하는 FPN 보정 기능을 사용하면 해당 이미지를 후보정할 수 있습니다. VT-16K5X2 카메라는 DSNU 보정 값에 추가로 더할 Black Level 값이나, PRNU 보정값에 곱할 Gain 값을 지정해서 FPN이 있는 이미지를 후보정할 수 있는 기능을 제공합니다.

고정 패턴 노이즈를 보정하는 기능과 관련한 XML 파라미터는 다음과 같습니다.

XML Parameters		Value	Description
FPN	DSNUCoefficient	-	현재의 DSNU 보정값에 더할 Black Level 값을 설정
Coefficients	DSNUCoefficientApply		위 항목에서 지정한 수치를 DSNU 보정값에 적용
Control	PRNUCoefficient	-	현재의 PRNU 보정값에 곱할 Gain 값을 설정
	PRNUCoefficientApply	-	위 항목에서 지정한 수치를 PRNU 보정값에 적용

표 9-16 XML Parameters related to PRNU

9.14 CXP Link Configuration

VT-16K5X2 카메라는 CoaXPress 인터페이스를 사용하여 카메라와 사용자 컴퓨터에 설치된 CXP 프레임그래버를 연결해야 합니다. CoaXPress 인터페이스는 단순히 coax 케이블을 사용하여 카메라와 CXP 프레임그래버를 연결하고, 케이블당 최대 12.5 Gbps로 데이터를 전송할 수 있습니다.

VT-16K5X2 카메라는 하나의 Master 연결에 최대 3개의 확장 연결로 링크를 구성할 수 있습니다. CoaXPress 표준에 따라서 자동 링크 탐지(Plug and Play) 메커니즘을 지원하기 때문에 카메라에서 CXP 프레임그래버로의 연결을 정확하게 감지할 수 있습니다.

그림 9-7 CXP Link Configuration

카메라와 CXP 프레임그래버 사이의 Link 구성 관련 XML 파라미터는 Transport Layer Control 하위의 CoaXPress 범주에 있고 다음과 같습니다.

XML Parameters		Value	Description			
CoaXPress	CxpLinkConfiguration Preferred	Read Only	카메라 탐색 시 카메라와 Host(프레임 그래버)와의 링크 구성에 사용할 bit rate 및 연결 개수를 표시			
	CXPLinkConfiguration	CXP1_X1, X2, X4 CXP3_X1, X2, X4 CXP5_X1, X2, X4 CXP6_X1, X2, X4 CXP10_X1, X2, X4 CXP12_X1, X2, X4	카메라와 Host 사이의 bit rate 및 연결 개수를 강제적으로 설정 예) CXP12_X4: CXP12 속도(12.5 Gbps) 를 사용하는 4개의 연결 구성			

표 9-17 XML Parameter related to CXP Link Configuration

9.15 Digital I/O Control

카메라의 컨트롤 입/출력 단자는 다양한 모드로 사용할 수 있습니다.

Digital I/O Control 관련 XML 파라미터는 다음과 같습니다.

XML Parameters		Value	Description	
DigitallOControl	LineSelector	Line0	카메라의 컨트롤 입/출력 6핀 단자 중 1번 핀에 대해 구성하는 항목으로, 카운터나 타이머 등과 관련한 입력 신호와 관련해서 설정	
		Line1	카메라의 컨트롤 입/출력 6핀 단자 중 2번 핀에 대해 구성하는 항목으로, Scan Direction을 Linel 로 설정했을 때의 입력 신호에 대해 설정	
		Line2	카메라의 컨트롤 입/출력 6핀 단자 중 6번 핀에 대해 구성하기 위한 항목으로, 일반적인 출력 신 호에 대해 설정	
	LineMode	Input	Line0이나 Line1을 선택한 경우 나타나는 항목	
		Output	Line2를 선택한 경우 나타나는 항목	
	LineInverter	FALSE	Line 출력 신호 반전되지 않음	
		TRUE	Line 출력 신호 반전	
	LineSource	Off	Line 출력 해제	
		High	High 출력	
		LinkTrigger	LinkTrigger 신호를 펄스로 출력	
		UserOutput0	UserOutputValue 설정 값에 의해 펄스 출력	
		Timer0Active	사용자 설정 Timer 출력 신호를 펄스로 출력	
		Strobe 0	StorobeO 신호를 펄스로 출력	
	UserOutput Selector	UserOutput0	UserOutputValue 설정 값에 의해 펄스 출력	
	UserOutput	FALSE	Bit를 Low로 설정	
	Value	TRUE	Bit를 High로 설정	
	StrobeSelector	Strobe0	Storbe Selector 설정	
	StrobeMode	Timed	Strobe Duration 설정 값에 따라 펄스 신호 출력	
		TriggerWidth	카메라에 입력된 트리거 신호와 동일한 펄스 폭 의 신호 출력	
	StrobeDelay	0~1000 µs	현재 출력 신호에 1µs 단위로 delay 설정	
	StrobeDuration	1~1000 µs	Strobe Mode를 Timed로 설정한 경우 펄스 신호 의 폭을 1µs 단위로 설정	

표 9-18 XML Parameters related to Digital I/O Control

카메라는 Exposure Active 출력 신호를 제공합니다. Exposure Active 신호는 다음 그림과 같이 노출 시간이 시작되면 상승하고 노출 시간이 종료되면 하강합니다. 이 신호는 플래시의 트리거로 사용할 수도 있고, 특히 카메라 또는 촬영 대상이 움직이는 환경에서 매우 유용합니다. 일반적으로 카메라는 노출 과정을 진행하는 동안 움직이면 안 됩니다. Exposure Active 신호를 관찰하여 노출이 언제 진행되는지, 카메라가 언제 움직이면 안 되는지 확인할 수 있습니다.

그림 9-8 User Output

9.16 Debounce

VT-16K5X2 카메라의 Debounce 기능을 사용하면 유효한 입력 신호와 무효한 입력 신호를 구분하여 유효한 입력 신호만 카메라에 공급할 수 있습니다. Debounce Time을 설정하여 유효한 입력 신호로 판단할 입력 신호의 최소 High 또는 Low 유지 시간을 지정할 수 있습니다. 이때, 유효한 입력 신호가 카메라에 공급된 시점과 적용된 시점 사이에는 Debounce Time만큼의 지연 시간이 발생합니다.

Debounce Time을 설정하면 다음 그림과 같이 설정 값보다 작은 High 및 Low 신호는 무효한 신호로 판단하여 무시됩니다.

그림 9-10 Debounce

9.17 Temperature Monitor

카메라에는 내부 온도를 모니터하기 위한 센서 칩이 내장되어 있어서 실시간으로 온도를 확인할 수 있습니다.

카메라 내부 온도 관련 XML 파라미터는 다음과 같습니다.

XML Parameter	S	Value	Description
DeviceControl	DeviceTemperatureSelector	Mainboard	온도 측정 위치를 메인 보드로 설정
	DeviceTemperature	-	섭씨 단위로 온도 표시

표 9-19 XML Parameters related to Device Temperature

9.18 Status LED

카메라 후면에는 카메라의 작동 상태를 알려주기 위한 LED가 있습니다.

LED의 상태와 그에 해당하는 카메라 상태는 다음과 같습니다.

Status LED	Descriptions	
Steady Red	카메라 초기화 안 됨	
Slow Flashing Red	CXP Link 연결 안 됨	
Fast Flashing Orange	CXP Link 확인 중임	
Steady Green	CXP Link 연결됨	
Steady Orange	CXP Configuration 불일치	
Fast Flashing Green	영상 데이터 획득 중임	

9.19 Test Pattern

카메라의 정상적인 작동 여부를 확인하기 위해 영상 센서로부터 나오는 영상 데이터 대신 내부에서 생성한 테스트 패턴을 출력하도록 설정할 수 있습니다. 테스트 패턴은 모두 네 가지가 있으며, 각각 가로 방향으로 값이 다른 이미지(Grey Horizontal Ramp), 대각 방향으로 값이 다른 이미지(Grey Diagonal Ramp), 대각 방향으로 값이 다르고 움직이는 이미지(Grey Diagonal Ramp Moving), 그리고 센서에서 출력하는 가로 방향으로 값이 다른 이미지(Sensor Specific)입니다.

테스트 패턴 관련 XML 파라미터는 다음과 같습니다.

XML Parameter		Value	Description
ImageFormatControl	TestPattern	Off	Test Pattern 기능 해제
		GreyHorizontalRamp	Grey Horizontal Ramp로 설정
		GreyDiagonalRamp	Grey Diagonal Ramp로 설정
		GreyDiagonalRampMoving	Grey Diagonal Ramp Moving 으로 설정
		SensorSpecific	센서에서 제공하는 테스트 패턴 으로 설정

표 9-21 XML Parameter related to Test Pattern

그림 9-12 Grey Diagonal Ramp

그림 9-13 Grey Diagonal Ramp Moving

그림 9-14 Sensor Specific

9.20 Reverse X

영상의 가운데 중심 축을 기준으로 영상의 좌우를 뒤집는 기능입니다. 이 기능은 Test Image 모드를 제외한 카메라의 모든 작동 모드에서 적용 가능합니다.

XML Parameter		Value	Description
ImageFormatControl	ReverseX	FALSE	Reverse X 기능 해제
		TRUE	영상의 좌우를 뒤집습니다.

 \pm 9-22 XML Parameter related to Reverse X

그림 9-15 원본 영상

그림 9-16 Reverse X된 영상

9.21 Counter Control

VT-16K5X2 카메라에서 제공하는 Counter 기능을 통해서 카메라의 특정 이벤트 개수를 셀 수 있습니다. 예를 들어, 외부에서 카메라에 공급된 트리거 신호의 수를 확인할 수 있습니다.

Counter Control 관련 XML 파라미터는 다음과 같습니다.

XML Parameters		Value	Description			
CounterAnd	CounterSelector	Counter0	설정할 Counter를 선택합니다.			
TimerControl	CounterEvent	Off	Counter를 멈춥니다.			
	Source	FrameActive	FrameActive 신호의 수를 셉니다.			
		LineActive	LineActive 신호의 수를 셉니다.			
		LinkTrigger	LinkTrigger 신호의 수를 셉니다.			
		LinkTrigger0	LinkTrigger0 신호의 수를 셉니다.			
		Line0	외부 트리거 신호의 수를 셉니다.			
	CounterEvent	RisingEdge	선택한 Event Source 신호의 상승 에지를 셉니다.			
	Activation	FallingEdge	선택한 Event Source 신호의 하강 에지를 셉니다.			
	CounterReset	Off	Counter Reset 트리거를 해제합니다.			
	Source	FrameActive	Frame Active 신호를 Reset Source로 사용			
		LinkTrigger	LinkTrigger 신호를 Reset Source로 사용			
		Acquisition	Acquisition Active 신호를 Reset Source로 사용			
		Active				
		Line0	Line0 신호를 Reset Source로 사용			
	CounterReset Activation	RisingEdge	선택한 Reset Source 신호의 상승 에지에서 Counter를 Reset			
		FallingEdge	선택한 Reset Source 신호의 하강 에지에서 Counter를 Reset			
		AnyEdge	선택한 Reset Source 신호의 상승 에지 또는 하강 에지에서 Counter를 Reset			
		LevelHigh	선택한 Reset Source 신호 레벨이 High이면 Counter를 Reset			
		LevelLow	선택한 Reset Source 신호 레벨이 Low이면 Counter를 Reset			
	CounterReset	-	 선택한 Counter를 초기화하고 다시 시작			
	CounterValue	-	선택한 Counter의 현재 값 표시			
	CounterValue AtReset	-	Counter Reset 명령을 실행했을 때 Counter의 값표시			
	CounterDuration	1 – 4294967295	Counter를 종료할 때까지 셀 이벤트 수를 설정			
	CounterStatus	-	Counter의 현재 상태 표시			

표 9-23 XML Parameters related to Counter Control (1)

XML Parameters		Value	Description
CounterAnd TimerControl	CounterTrigger Source	Off	Counter Trigger Source 기능을 사용하지 않음
		FrameActive	FrameActive 신호를 Counter의 Trigger Source로 사용
		Link Trigger	LinkTrigger 신호를 Counter의 Trigger Source 로 사용
		AcquisitionActive	AcquisitionActive 신호를 Counter의 Trigger Source로 사용
		Line0	Line0신호를 Counter의 Trigger Source로 사 용
	CounterTrigger Activation	RisingEdge	선택한 Counter Trigger Source 신호의 상승 에지에서 Counter 시작
		FallingEdge	선택한 Counter Trigger Source 신호의 하강 에지에서 Counter 시작
		AnyEdge	선택한 Counter Trigger Source 신호의 상승 에지 또는 하강 에지에서 Counter 시작
		LevelHigh	선택한 Counter Trigger Source 신호 레벨이 High이면 Counter 시작
		LevelLow	선택한 Counter Trigger Source 신호 레벨이 Low이면 Counter 시작

 \pm 9-24 $\,$ XML Parameters related to Counter Control (2) $\,$

9.22 Timer Control

Line Selector를 Line1으로 설정하고 Line Source를 Timer(TimerOActive)로 설정하면 카메라는 Timer를 사용하여 출력 신호를 내보낼 수 있습니다. VT-16K5X2 카메라는 Exposure Active, Frame Active, CC1 또는 외부 트리거 입력 신호를 Timer의 소스 신호로 사용할 수 있습니다.

Timer Control 관련 XML 파라미터는 다음과 같습니다.

XML Parameters		Value	Description	
CounterAnd	TimerSelector	Timer0	설정할 Timer를 선택합니다.	
TimerControl	TimerDuration	1 ~ 60,000,000 µs	Timer Trigger Activation을 Rising/Falling Edge로 설정한 경우 Timer 출력 신호의 주기를 지정	
	TimerDelay	0~60,000,000 µs	Timer 출력 신호를 출력하기 전에 적용할 지연 시간 지정	
	TimerReset	-	Timer를 초기화하고 다시 시작	
	TimerTrigger	Off	Timer 출력 신호 해제	
	Source	LineTrigger	한 라인의 readout 구간을 Timer 출력 신호의 소스 신호로 사용	
		FrameActive	한 프레임의 readout 구간을 Timer 출력 신호의 소스 신호로 사용	
		Line0	외부 트리거 신호를 Timer 출력 신호의 소스 신호로 사용	
	TimerTrigger Activation	RisingEdge	선택한 트리거 신호의 상승 에지를 Timer 출력 신호 트리거로 작동하도록 지정	
		FallingEdge	선택한 트리거 신호의 하강 에지를 Timer 출력 신호 트리거로 작동하도록 지정	
		AnyEdge	선택한 트리거 신호의 상승 에지 또는 하강 에지를 Timer 출력 신호 트리거로 작동하도록 지정	
		LevelHigh	선택한 트리거 신호가 High 구간일 때 Timer 출력 신호가 유효하도록 지정	
		LevelLow	선택한 트리거 신호가 Low 구간일 때 Timer 출력 신호가 유효하도록 지정	

표 9-25 XML Parameters related to Timer Control

예를 들어, Timer Trigger Source를 Exposure Active로 설정하고, Timer Trigger Activation을 Level High로 설정한 경우에는 다음과 같이 Timer가 작동합니다.

- 1. Timer Trigger Source 파라미터로 설정한 소스 신호가 공급되면 Timer는 작동을 시작합니다.
- 2. Timer Delay 파라미터로 설정한 지연 시간이 시작된 후 만료됩니다.
- 3. 지연 시간이 만료되면 소스 신호의 High 구간만큼 Timer 신호가 상승합니다.

* Timer Trigger Activation is set to Level High.

그림 9-17 Timer Signal

9.23 Device User ID

카메라에 사용자 정의 정보를 32 byte까지 입력할 수 있습니다.

Device User ID 관련 XML 파라미터는 다음과 같습니다.

XML Parameter		Description
DeviceControl	DeviceUserID	사용자 정의 정보 입력(32 byte)

 \pm 9-26 $\,$ XML Parameter related to Device User ID $\,$

9.24 Device Reset

카메라를 물리적으로 Reset하여 전원을 껐다 켭니다.

Device Reset 관련 XML 파라미터는 다음과 같습니다.

XML Parameter		Description
DeviceControl	Device Reset	물리적 Reset 수행

⊞ 9-27 XML Parameter related to Device Reset

9.25 Field Upgrade

카메라는 필드에서 카메라를 분해하지 않고 Camera Link 인터페이스를 통해 펌웨어와 FPGA 로직을 업그레이드하는 기능을 제공합니다. 자세한 변경 방법은 Appendix A를 참조하십시오.

9.26 User Set Control

사용자는 카메라 설정을 카메라 내부의 플래시 영역에 저장하거나 다시 불러올 수 있습니다. 저장 영역은 두 개를 지원하고 Load 영역은 세 개를 지원합니다.

User Set Control 관련 XML 파라미터는 다음과 같습니다.

XML Parameter	S	Value	Description
UserSetControl	UserSetSelector	Default	카메라 설정을 Factory Default Settings로 선택
		UserSet1	카메라 설정을 UserSet1로 선택
		UserSet2	카메라 설정을 UserSet2로 선택
	UserSetLoad -		User Set Selector에서 선택한 사용자 설정을 카메라 에 Load
	UserSetSave	-	User Set Selector에서 선택한 영역에 현재의 카메라 설정을 저장
			단, Default 영역은 Factory Default Settings 영역 으로 Load만 가능합니다.
	UserSetDefault	Default	카메라 Reset 시 Factory Default Settings 적용
		User Set1	카메라 Reset 시 UserSet1 적용
		User Set2	카메라 Reset 시 UserSet2 적용

표 9-28 XML Parameters related to User Set Control

Default 영역에 저장된 카메라 설정 값은 카메라의 작업 영역으로 불러올 수는 있지만 설정 값을 변경할 수는 없습니다. 카메라의 전원을 껐다 켜거나 카메라를 reset하면 카메라의 작업 영역에서 설정한 값은 없어집니다. 작업 영역의 현재 설정 값을 reset한 후에도 사용하려면 설정 값을 사용자 영역 중 하나에 저장해야 합니다.

그림 9-18 User Set Control

Chapter 10. 제품 동작 이상 확인 및 조치

제품이 이상 동작을 하면 아래 사항을 점검해 주시기 바랍니다.

- 화면에 아무것도 보이지 않을 경우
 - 케이블 연결이 제대로 되었는지 확인하십시오.
 - 전원 공급이 제대로 이루어지는지 확인하십시오.
 - 외부 트리거 입력 모드일 경우, 트리거가 제대로 입력되는지 확인하십시오.
- 화면이 선명하지 않을 경우
 - 렌즈나 Glass에 먼지가 묻어 있는지 확인하십시오.
 - 렌즈의 초점이 잘 맞는지 확인하십시오.
- 영상이 어둡게 나올 경우
 - 렌즈가 막혀 있는지 확인하십시오.
 - 노출(Exposure)시간이 적절한 지 확인하십시오.
- 카메라 동작이 이상하고 뜨거울 경우
 - 전원 연결이 제대로 되었는지 확인하십시오.
 - 카메라에서 연기가 나거나 비정상적인 발열 시 사용을 중지하십시오.
- 트리거 모드가 제대로 동작되지 않을 경우
 - LinkTrigger0 트리거 모드의 경우 프레임그래버의 LinkTrigger0 설정이 제대로 되었는지 확인하십시오.
 - 외부 트리거 모드의 경우 케이블 연결이 제대로 되었는지 확인하십시오.
- 통신이 되지 않을 때
 - CoaXPress 케이블 연결이 제대로 되었는지 확인하십시오.
 - PC에 장착된 프레임그래버에 카메라가 제대로 연결되어 있는지, 설정이 제대로 되었는지 확인하십시오.

품질보증서

제품명				보증기간
모델명				
구입일자	년	월	일	
보증기간	년	월	일	

고객주소:	성명
	연락처
판매처:	성명
	연락처

사후 봉사를 받으실 때

사용 설명서를 한 번 더 확인하고 고장이라 판단되면 고장 상태와 제품 정보를 명확히 기록하여 알려주십시오.

고장의 상태나 내용에 따라 유상과 무상으로 구분되며 아래의 고장 원인은 유상으로 처리됩니다.

- 사용자 취급 부주의에 의한 고장
- 정격전원 이외의 전원 연결 시
- 사용자 임의로 분해 및 수리한 경우
- 재해에 의한 고장(화재, 침수, 낙뢰 등)

고장내용 기록

Appendix A. Field Upgrade

다음 절차에 따라서 카메라의 MCU, FPGA 및 XML 파일을 업그레이드할 수 있습니다.

- 1. 컨피규레이터를 실행한 후 Configurator Plus 창 > Tools > Device Maintenance를 클릭하여

 Device Maintenance 창을 엽니다.
- 2. PKG 탭을 선택하고, File Path 옆의 ...
 버튼을 클릭한 다음 MCU, FPGA 또는 XML

 업그레이드 파일을 선택하고
 Download

 버튼을 클릭합니다.

Device Maintenance				>
PKG Defect FFC	Script			
			DKC	
			PKG	
PKG File Information				
1. File Path ····				
			1	
2 File Size			1	
2. The Size				
1 Camera PKC				
1. Califera PKG.				
2. Download PKG:				
		0 %	1	
Camera PKG Download				
	Download			

- 3. 업그레이드 파일의 다운로드가 진행되고 하단에 진행 상황이 표시됩니다.
- 4. 다운로드가 완료되면 OK 버튼을 클릭하여 확인 창을 닫습니다.

Appendix B. LUT Download

LUT 데이터는 두 가지 유형으로 생성할 수 있습니다. 제공되는 프로그램에서 Luminance의 감마 값을 조절한 후 다운로드하거나, 엑셀 등에서 작성한 CSV 파일(*.csv)을 불러와서 다운로드할 수 있습니다.

B.1 감마 곡선 다운로드

- 1.Vieworks Imaging Solution 7.X를 실행한 후 Configure 버튼을 클릭하여 아래와 같은 창을
표시합니다. LUT 탭을 선택하고 Type 드롭다운 목록에서 Luminance를 선택합니다.
- 2. Gamma 입력 필드에 원하는 값을 설정하고 Apply 버튼을 클릭합니다.

- Device Maintenance x PKG LUT Script Graph Type: 4095 Luminance 💌 3071 Load File Save File Gamma: 2047 1.00 Apply Draw: 1023 Linear Point Clear 00 1023 2047 3071 4095 Config 0 % Camera LUT Download / Upload Download Upload to PC
- 3. Download 버튼을 클릭하여 설정한 감마 값을 카메라에 다운로드합니다.

4. 다운로드가 완료되면 OK 버튼을 클릭하여 확인 창을 닫습니다.
B.2 CSV 파일 다운로드

- 엑셀에서 아래 왼쪽의 그림처럼 LUT 테이블을 작성하고 CSV 파일(*.csv)로 저장합니다. 오 른쪽 그림은 작성한 파일을 메모장에서 열었을 때의 모습입니다. 파일 작성이 끝난 후에는 프로그램에서 읽을 수 있도록 CSV 파일의 확장자를 .lut로 변경해야 합니다. 작성 시 적용 되는 규칙은 다음과 같습니다.
 - ':' 또는 '--'로 시작하는 라인은 주석으로 처리됩니다.
 - 입력값을 기준으로 0부터 4095의 순으로 빠짐없이 기록합니다.

2. Vieworks Imaging Solution 7.X를 실행한 후 Configure 버튼을 클릭하여 아래와 같은 창을 표시합니다. LUT 탭을 선택하고 Type 드롭다운 목록에서 Luminance를 선택한 다음
 Load File 버튼을 클릭합니다.

3. 작성한 LUT 파일을 선택하고 Open 버튼을 클릭합니다.

Open					? 🗙
Look <u>i</u> n:	🗀 Upgrade		•	+ 🗈 📸 🎟 -	
My Recent Documents	📾 lut, lut				
My Documents					
My Computer					
My Network Places	File <u>n</u> ame: Files of <u>typ</u> e:	lut,lut LUT files (*,lut)		 ✓ ✓ ✓ ✓ 	<u>)</u> pen ancel

4. Download 버튼을 클릭합니다. 다운로드가 완료되면 OK 버튼을 클릭하여 확인 창을 닫습니다.

Appendix C. Index

6

6핀	커넥터	30,	31

A

acquisition control	.33
Acquisition Mode 파라미터	.33
Acquisition Start 명령	.33
Acquisition Stop 명령	.33
any edge	.35
Areascan 모드	.39

В

back panel	.28
Backward 모드	.41
block diagram	.24

С

CC1 트리거 신호	33
CoaXPress 커넥터	29
CXP 커넥터2	28, 29

D

dimension	26
direction input	
DSNU	48
DSNU 데이터 생성	48
DSNU 보정	48

Ε

ovtornal	ㅌ리거			26
external	드닉기	 	• • • • • • • • • • • • • • • • • • • •	

F

falling edge	35
Fixed Pattern Noise	52
Forward 모드	41
FPN	52
FPN coefficients	52
FPN 보정	52
Free-Run	

G

qain	값	조정4(6
gann		± 0	-

VIEWOLKS

Н

heat dissipation	26
Hirose	, 31

I

Internetion	Ctoro	ATL 40
integration	Slaye	굿시

L

Line 1 방향	41
Line Start 트리거 신호 생성하기	
LineO 신호	33
Linescan 모드	39, 40

Μ

Mating	30
mounting	26

0

offset 추가	16
-----------	----

р

pixel에	offset	추가	 	 46
PRNU			 	 50

Q

quantum efficiency.....25

R

S

schematic diagram	32
specification	23
strobe output	32
strobe 출력 신호	32
strobe 출력 회로	32

т

Target Level AUTO	.51
TDI Stage 숫자	.40
TDI Stages 파라미터	.40
Trigger Activation 파라미터	.35
trigger input	.32
Trigger Mode 파라미터	.33
Trigger Selector 파라미터	.33
Trigger Source 파라미터	.35

V

Vieworks Imaging Solution27
Vieworks Imaging Solution 다운로드27
Vieworks Imaging Soulution6
VIS

VIS 다운로드	27
VIS 설치	27
VL-16K5X2-E300A-64 specification	23
VL-16K5X2-E300A-64 사양	23
VL-16K5X2-H300A-256 specification	23
VL-16K5X2-H300A-256 사양	23
VT-16K5X2-E300A-64	39
VT-16K5X2-H300A-256	39

Χ

XML 파라미터

BalanceWhiteAuto	46
BinningHorizontal	43
BinningHorizontalMode	43
BinningSelector	43
BinningVertical	43
BinningVerticalMode	43
CounterAndTimeControl	62, 64
CounterDuration	62
CounterEventActivation	62
CounterEventSource	62
CounterReset	62
CounterResetSource	62
CounterSelector	62
CounterStatus	62
CounterValue	62
CounterValueAtReset	62
DataRoiHeight	45
DataRoiOffsetX	45
DataRoiOffsetY	45
DataRoiSelector	45
DataRoiWidth	45
Device Reset	65
DeviceScanType	39
DeviceTemperature	57
DeviceTemperatureSelector	57
DeviceUserID	65
DigitallOControl	54
DSNUCoefficient	52
DSNUCoefficientApply	52
DSNUDataGenerate	48
DSNUDataGenerateAll	48
DSNUDataLoad	48

DSNUDataSave	48
	40
	62
FixedPatternivoise	45
FPNCoefficientsControl	
FrameActive	54
GreyDiagonalRamp	58
GreyDiagonalRampMoving	58
GreyHorizontalRamp	58
Line 0	54
Line 1	54
LineActive	54, 62
LineInverter	54
LineSelector	54
LineSource	54
LinkTrigger	62
LinkTrigger0	62
Mainboard	57
OffsetX	42
OffsetY	42
OnticalBlackClamp	
DivelFormat	40 11
PINEL Coporato	44 ۵۵
	50
	52
PRNUCoefficientApply	
PRNUCorrection	50
PRNUDataLoad	50
PRNUDataSave	50
PRNUDataSelector	50
PRNUTargetLevel	50
PRNUTargetLevelAUTO	50
ReverseX	61
RisingEdge	62
ROI 설정 관련	42
Scan Direction	41
SensorSpecific	58
TDI Stages	40
TestPattern	58
Timer()Active	54
TimerDelay	64
TimerDuration	64
TimerReset	64
TimerSelector	64
TimerTriggerActivation	64
TimerTriggerSource	
Trigger Divider	
Trigger Multiplier	31 27
	37
	31
InggerRescalerFilterSize	31
UserDefault	66
UserOutputU	54
UserOutputValue	54
UserSet1	66
UserSet2	66
UserSetControl	66
UserSetLoad	66
UserSetSave	66
UserSetSelector	66

VIEWOLKS

٦

고정	패턴	노이즈	 	52

C

다이어	그램.				 	 	 24
데이터	ROI	유효	영역	결정	 	 	 .45

메이팅 커넥터	30
모노 카메라 픽셀 포맷	.44
무효한 입력 신호	56

н

λ

사양	23
사용자 정의 정보 입력	65
상승 에지	35
서문	6
스캔 방향 신호 입력 회로	32
스트로브 출력	32

0

양자	효율.			25
영상	센서	스캔	방향	11

영상 획득 기능	.
외부 트리거 신	<u>!</u> 호
유효한 입력 신	<u>l</u> 호56

ᄎ

치수26

٦

카메라 LED 설명57
카메라 껐다켜기65
카메라 물리적 리셋65
카메라 연결27
카메라 온도 관련 파라미터57
카메라 치수26
카메라 후면부28
카메라설정 저장/불러오기66
컬러 카메라 픽셀 포맷44

Е

테스트 패턴	출력	58
트리거 신호	입력 회로	32
트리거 주기	입력	37

ò	회로도
하강 에지35	히로세 6핀 커넥터30, 31
하우징 온도26	

